Properties

Label 8208.2.a.bs.1.4
Level $8208$
Weight $2$
Character 8208.1
Self dual yes
Analytic conductor $65.541$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8208,2,Mod(1,8208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8208.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8208 = 2^{4} \cdot 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8208.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,-1,0,-1,0,0,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(65.5412099791\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.88980.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 10x^{2} + 12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 4104)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-2.33812\) of defining polynomial
Character \(\chi\) \(=\) 8208.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.33812 q^{5} +2.33812 q^{7} +0.771960 q^{11} -6.14306 q^{13} -2.00000 q^{17} -1.00000 q^{19} -8.02510 q^{23} +0.466816 q^{25} +6.38184 q^{29} -2.88204 q^{31} +5.46682 q^{35} +7.49192 q^{37} -10.2639 q^{41} +8.02510 q^{43} -7.25314 q^{47} -1.53318 q^{49} -9.70922 q^{53} +1.80494 q^{55} +3.80494 q^{59} -8.01437 q^{61} -14.3632 q^{65} -12.9480 q^{67} +11.6870 q^{71} -13.5027 q^{73} +1.80494 q^{77} +14.2969 q^{79} +11.1760 q^{83} -4.67624 q^{85} -0.151348 q^{89} -14.3632 q^{91} -2.33812 q^{95} -5.34886 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{5} - q^{7} + 3 q^{11} - 3 q^{13} - 8 q^{17} - 4 q^{19} + q^{25} + 3 q^{29} - q^{31} + 21 q^{35} - 3 q^{37} - 8 q^{41} + 3 q^{47} - 7 q^{49} - 7 q^{53} - 4 q^{55} + 4 q^{59} - q^{61} - 15 q^{65}+ \cdots - 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.33812 1.04564 0.522820 0.852443i \(-0.324880\pi\)
0.522820 + 0.852443i \(0.324880\pi\)
\(6\) 0 0
\(7\) 2.33812 0.883727 0.441864 0.897082i \(-0.354318\pi\)
0.441864 + 0.897082i \(0.354318\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.771960 0.232755 0.116377 0.993205i \(-0.462872\pi\)
0.116377 + 0.993205i \(0.462872\pi\)
\(12\) 0 0
\(13\) −6.14306 −1.70378 −0.851889 0.523722i \(-0.824543\pi\)
−0.851889 + 0.523722i \(0.824543\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −8.02510 −1.67335 −0.836675 0.547700i \(-0.815504\pi\)
−0.836675 + 0.547700i \(0.815504\pi\)
\(24\) 0 0
\(25\) 0.466816 0.0933631
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.38184 1.18508 0.592539 0.805542i \(-0.298126\pi\)
0.592539 + 0.805542i \(0.298126\pi\)
\(30\) 0 0
\(31\) −2.88204 −0.517630 −0.258815 0.965927i \(-0.583332\pi\)
−0.258815 + 0.965927i \(0.583332\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 5.46682 0.924060
\(36\) 0 0
\(37\) 7.49192 1.23166 0.615832 0.787878i \(-0.288820\pi\)
0.615832 + 0.787878i \(0.288820\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −10.2639 −1.60295 −0.801474 0.598029i \(-0.795951\pi\)
−0.801474 + 0.598029i \(0.795951\pi\)
\(42\) 0 0
\(43\) 8.02510 1.22382 0.611908 0.790929i \(-0.290402\pi\)
0.611908 + 0.790929i \(0.290402\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −7.25314 −1.05798 −0.528990 0.848628i \(-0.677429\pi\)
−0.528990 + 0.848628i \(0.677429\pi\)
\(48\) 0 0
\(49\) −1.53318 −0.219026
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −9.70922 −1.33366 −0.666832 0.745208i \(-0.732350\pi\)
−0.666832 + 0.745208i \(0.732350\pi\)
\(54\) 0 0
\(55\) 1.80494 0.243378
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.80494 0.495361 0.247680 0.968842i \(-0.420332\pi\)
0.247680 + 0.968842i \(0.420332\pi\)
\(60\) 0 0
\(61\) −8.01437 −1.02613 −0.513067 0.858348i \(-0.671491\pi\)
−0.513067 + 0.858348i \(0.671491\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −14.3632 −1.78154
\(66\) 0 0
\(67\) −12.9480 −1.58185 −0.790925 0.611913i \(-0.790400\pi\)
−0.790925 + 0.611913i \(0.790400\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 11.6870 1.38699 0.693495 0.720462i \(-0.256070\pi\)
0.693495 + 0.720462i \(0.256070\pi\)
\(72\) 0 0
\(73\) −13.5027 −1.58037 −0.790183 0.612871i \(-0.790015\pi\)
−0.790183 + 0.612871i \(0.790015\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.80494 0.205692
\(78\) 0 0
\(79\) 14.2969 1.60852 0.804261 0.594276i \(-0.202561\pi\)
0.804261 + 0.594276i \(0.202561\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 11.1760 1.22673 0.613365 0.789800i \(-0.289816\pi\)
0.613365 + 0.789800i \(0.289816\pi\)
\(84\) 0 0
\(85\) −4.67624 −0.507210
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −0.151348 −0.0160429 −0.00802144 0.999968i \(-0.502553\pi\)
−0.00802144 + 0.999968i \(0.502553\pi\)
\(90\) 0 0
\(91\) −14.3632 −1.50568
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.33812 −0.239886
\(96\) 0 0
\(97\) −5.34886 −0.543094 −0.271547 0.962425i \(-0.587535\pi\)
−0.271547 + 0.962425i \(0.587535\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −14.4041 −1.43326 −0.716630 0.697454i \(-0.754316\pi\)
−0.716630 + 0.697454i \(0.754316\pi\)
\(102\) 0 0
\(103\) −5.13232 −0.505703 −0.252851 0.967505i \(-0.581368\pi\)
−0.252851 + 0.967505i \(0.581368\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.19506 0.405552 0.202776 0.979225i \(-0.435004\pi\)
0.202776 + 0.979225i \(0.435004\pi\)
\(108\) 0 0
\(109\) −5.20580 −0.498625 −0.249313 0.968423i \(-0.580205\pi\)
−0.249313 + 0.968423i \(0.580205\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2.23878 −0.210606 −0.105303 0.994440i \(-0.533581\pi\)
−0.105303 + 0.994440i \(0.533581\pi\)
\(114\) 0 0
\(115\) −18.7637 −1.74972
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −4.67624 −0.428671
\(120\) 0 0
\(121\) −10.4041 −0.945825
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −10.5991 −0.948016
\(126\) 0 0
\(127\) 3.76409 0.334009 0.167004 0.985956i \(-0.446591\pi\)
0.167004 + 0.985956i \(0.446591\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 3.40449 0.297452 0.148726 0.988878i \(-0.452483\pi\)
0.148726 + 0.988878i \(0.452483\pi\)
\(132\) 0 0
\(133\) −2.33812 −0.202741
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −7.74261 −0.661496 −0.330748 0.943719i \(-0.607301\pi\)
−0.330748 + 0.943719i \(0.607301\pi\)
\(138\) 0 0
\(139\) −15.3525 −1.30218 −0.651091 0.759000i \(-0.725688\pi\)
−0.651091 + 0.759000i \(0.725688\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −4.74220 −0.396563
\(144\) 0 0
\(145\) 14.9215 1.23916
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 15.5170 1.27120 0.635602 0.772017i \(-0.280752\pi\)
0.635602 + 0.772017i \(0.280752\pi\)
\(150\) 0 0
\(151\) −22.2811 −1.81321 −0.906605 0.421979i \(-0.861335\pi\)
−0.906605 + 0.421979i \(0.861335\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −6.73857 −0.541255
\(156\) 0 0
\(157\) −12.9480 −1.03336 −0.516681 0.856178i \(-0.672833\pi\)
−0.516681 + 0.856178i \(0.672833\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −18.7637 −1.47878
\(162\) 0 0
\(163\) −1.97490 −0.154686 −0.0773429 0.997005i \(-0.524644\pi\)
−0.0773429 + 0.997005i \(0.524644\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.46682 0.113506 0.0567528 0.998388i \(-0.481925\pi\)
0.0567528 + 0.998388i \(0.481925\pi\)
\(168\) 0 0
\(169\) 24.7372 1.90286
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −14.4069 −1.09534 −0.547670 0.836695i \(-0.684485\pi\)
−0.547670 + 0.836695i \(0.684485\pi\)
\(174\) 0 0
\(175\) 1.09147 0.0825075
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1.04127 0.0778278 0.0389139 0.999243i \(-0.487610\pi\)
0.0389139 + 0.999243i \(0.487610\pi\)
\(180\) 0 0
\(181\) 8.16816 0.607135 0.303567 0.952810i \(-0.401822\pi\)
0.303567 + 0.952810i \(0.401822\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 17.5170 1.28788
\(186\) 0 0
\(187\) −1.54392 −0.112903
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 15.9258 1.15235 0.576174 0.817327i \(-0.304545\pi\)
0.576174 + 0.817327i \(0.304545\pi\)
\(192\) 0 0
\(193\) 25.4687 1.83327 0.916637 0.399721i \(-0.130893\pi\)
0.916637 + 0.399721i \(0.130893\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −11.7641 −0.838156 −0.419078 0.907950i \(-0.637647\pi\)
−0.419078 + 0.907950i \(0.637647\pi\)
\(198\) 0 0
\(199\) −0.610290 −0.0432623 −0.0216311 0.999766i \(-0.506886\pi\)
−0.0216311 + 0.999766i \(0.506886\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 14.9215 1.04728
\(204\) 0 0
\(205\) −23.9982 −1.67611
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −0.771960 −0.0533976
\(210\) 0 0
\(211\) −1.39375 −0.0959500 −0.0479750 0.998849i \(-0.515277\pi\)
−0.0479750 + 0.998849i \(0.515277\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 18.7637 1.27967
\(216\) 0 0
\(217\) −6.73857 −0.457444
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 12.2861 0.826454
\(222\) 0 0
\(223\) 27.1933 1.82100 0.910498 0.413514i \(-0.135699\pi\)
0.910498 + 0.413514i \(0.135699\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.77983 0.118132 0.0590659 0.998254i \(-0.481188\pi\)
0.0590659 + 0.998254i \(0.481188\pi\)
\(228\) 0 0
\(229\) −14.7085 −0.971962 −0.485981 0.873969i \(-0.661538\pi\)
−0.485981 + 0.873969i \(0.661538\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 28.8175 1.88790 0.943949 0.330092i \(-0.107080\pi\)
0.943949 + 0.330092i \(0.107080\pi\)
\(234\) 0 0
\(235\) −16.9587 −1.10627
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 26.6931 1.72663 0.863315 0.504665i \(-0.168384\pi\)
0.863315 + 0.504665i \(0.168384\pi\)
\(240\) 0 0
\(241\) 6.93726 0.446868 0.223434 0.974719i \(-0.428273\pi\)
0.223434 + 0.974719i \(0.428273\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −3.58477 −0.229023
\(246\) 0 0
\(247\) 6.14306 0.390874
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 10.5740 0.667427 0.333714 0.942675i \(-0.391698\pi\)
0.333714 + 0.942675i \(0.391698\pi\)
\(252\) 0 0
\(253\) −6.19506 −0.389480
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 30.3669 1.89423 0.947116 0.320891i \(-0.103982\pi\)
0.947116 + 0.320891i \(0.103982\pi\)
\(258\) 0 0
\(259\) 17.5170 1.08845
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −21.0868 −1.30027 −0.650134 0.759819i \(-0.725287\pi\)
−0.650134 + 0.759819i \(0.725287\pi\)
\(264\) 0 0
\(265\) −22.7013 −1.39453
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −11.3274 −0.690643 −0.345321 0.938484i \(-0.612230\pi\)
−0.345321 + 0.938484i \(0.612230\pi\)
\(270\) 0 0
\(271\) −3.15017 −0.191359 −0.0956795 0.995412i \(-0.530502\pi\)
−0.0956795 + 0.995412i \(0.530502\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.360363 0.0217307
\(276\) 0 0
\(277\) 1.55466 0.0934103 0.0467052 0.998909i \(-0.485128\pi\)
0.0467052 + 0.998909i \(0.485128\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −10.8229 −0.645642 −0.322821 0.946460i \(-0.604631\pi\)
−0.322821 + 0.946460i \(0.604631\pi\)
\(282\) 0 0
\(283\) −20.8964 −1.24216 −0.621081 0.783746i \(-0.713306\pi\)
−0.621081 + 0.783746i \(0.713306\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −23.9982 −1.41657
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −16.4693 −0.962145 −0.481072 0.876681i \(-0.659753\pi\)
−0.481072 + 0.876681i \(0.659753\pi\)
\(294\) 0 0
\(295\) 8.89641 0.517969
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 49.2987 2.85102
\(300\) 0 0
\(301\) 18.7637 1.08152
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −18.7386 −1.07297
\(306\) 0 0
\(307\) −23.6977 −1.35250 −0.676250 0.736672i \(-0.736396\pi\)
−0.676250 + 0.736672i \(0.736396\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 20.8666 1.18324 0.591620 0.806217i \(-0.298489\pi\)
0.591620 + 0.806217i \(0.298489\pi\)
\(312\) 0 0
\(313\) 5.77273 0.326294 0.163147 0.986602i \(-0.447836\pi\)
0.163147 + 0.986602i \(0.447836\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 11.1574 0.626664 0.313332 0.949644i \(-0.398555\pi\)
0.313332 + 0.949644i \(0.398555\pi\)
\(318\) 0 0
\(319\) 4.92652 0.275832
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.00000 0.111283
\(324\) 0 0
\(325\) −2.86768 −0.159070
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −16.9587 −0.934965
\(330\) 0 0
\(331\) −10.8193 −0.594683 −0.297341 0.954771i \(-0.596100\pi\)
−0.297341 + 0.954771i \(0.596100\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −30.2740 −1.65405
\(336\) 0 0
\(337\) 0.128279 0.00698783 0.00349391 0.999994i \(-0.498888\pi\)
0.00349391 + 0.999994i \(0.498888\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −2.22482 −0.120481
\(342\) 0 0
\(343\) −19.9516 −1.07729
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −20.7831 −1.11569 −0.557846 0.829944i \(-0.688372\pi\)
−0.557846 + 0.829944i \(0.688372\pi\)
\(348\) 0 0
\(349\) −10.8642 −0.581547 −0.290774 0.956792i \(-0.593913\pi\)
−0.290774 + 0.956792i \(0.593913\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 14.9624 0.796366 0.398183 0.917306i \(-0.369641\pi\)
0.398183 + 0.917306i \(0.369641\pi\)
\(354\) 0 0
\(355\) 27.3256 1.45029
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 32.2453 1.70184 0.850920 0.525295i \(-0.176045\pi\)
0.850920 + 0.525295i \(0.176045\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −31.5709 −1.65249
\(366\) 0 0
\(367\) −21.3041 −1.11207 −0.556033 0.831160i \(-0.687677\pi\)
−0.556033 + 0.831160i \(0.687677\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −22.7013 −1.17860
\(372\) 0 0
\(373\) 30.8547 1.59760 0.798799 0.601598i \(-0.205469\pi\)
0.798799 + 0.601598i \(0.205469\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −39.2040 −2.01911
\(378\) 0 0
\(379\) 29.8426 1.53291 0.766456 0.642297i \(-0.222018\pi\)
0.766456 + 0.642297i \(0.222018\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −31.2004 −1.59426 −0.797132 0.603805i \(-0.793651\pi\)
−0.797132 + 0.603805i \(0.793651\pi\)
\(384\) 0 0
\(385\) 4.22017 0.215080
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 36.3557 1.84331 0.921654 0.388013i \(-0.126839\pi\)
0.921654 + 0.388013i \(0.126839\pi\)
\(390\) 0 0
\(391\) 16.0502 0.811694
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 33.4278 1.68194
\(396\) 0 0
\(397\) −29.9067 −1.50098 −0.750488 0.660884i \(-0.770181\pi\)
−0.750488 + 0.660884i \(0.770181\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 32.7888 1.63739 0.818697 0.574226i \(-0.194697\pi\)
0.818697 + 0.574226i \(0.194697\pi\)
\(402\) 0 0
\(403\) 17.7046 0.881927
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 5.78346 0.286676
\(408\) 0 0
\(409\) −31.7224 −1.56857 −0.784286 0.620399i \(-0.786971\pi\)
−0.784286 + 0.620399i \(0.786971\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 8.89641 0.437764
\(414\) 0 0
\(415\) 26.1309 1.28272
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −13.0759 −0.638801 −0.319400 0.947620i \(-0.603481\pi\)
−0.319400 + 0.947620i \(0.603481\pi\)
\(420\) 0 0
\(421\) 23.7713 1.15854 0.579272 0.815134i \(-0.303337\pi\)
0.579272 + 0.815134i \(0.303337\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.933631 −0.0452878
\(426\) 0 0
\(427\) −18.7386 −0.906823
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.42024 0.0684105 0.0342053 0.999415i \(-0.489110\pi\)
0.0342053 + 0.999415i \(0.489110\pi\)
\(432\) 0 0
\(433\) 0.303963 0.0146075 0.00730376 0.999973i \(-0.497675\pi\)
0.00730376 + 0.999973i \(0.497675\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8.02510 0.383893
\(438\) 0 0
\(439\) −24.3915 −1.16414 −0.582072 0.813137i \(-0.697758\pi\)
−0.582072 + 0.813137i \(0.697758\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −27.2262 −1.29356 −0.646779 0.762678i \(-0.723884\pi\)
−0.646779 + 0.762678i \(0.723884\pi\)
\(444\) 0 0
\(445\) −0.353871 −0.0167751
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −3.30151 −0.155808 −0.0779041 0.996961i \(-0.524823\pi\)
−0.0779041 + 0.996961i \(0.524823\pi\)
\(450\) 0 0
\(451\) −7.92331 −0.373094
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −33.5830 −1.57439
\(456\) 0 0
\(457\) −17.7831 −0.831856 −0.415928 0.909398i \(-0.636543\pi\)
−0.415928 + 0.909398i \(0.636543\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −10.2305 −0.476481 −0.238241 0.971206i \(-0.576571\pi\)
−0.238241 + 0.971206i \(0.576571\pi\)
\(462\) 0 0
\(463\) 3.97853 0.184898 0.0924489 0.995717i \(-0.470531\pi\)
0.0924489 + 0.995717i \(0.470531\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4.42269 0.204658 0.102329 0.994751i \(-0.467371\pi\)
0.102329 + 0.994751i \(0.467371\pi\)
\(468\) 0 0
\(469\) −30.2740 −1.39792
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 6.19506 0.284849
\(474\) 0 0
\(475\) −0.466816 −0.0214190
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 22.7071 1.03751 0.518756 0.854922i \(-0.326395\pi\)
0.518756 + 0.854922i \(0.326395\pi\)
\(480\) 0 0
\(481\) −46.0233 −2.09848
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −12.5063 −0.567881
\(486\) 0 0
\(487\) −3.72825 −0.168943 −0.0844715 0.996426i \(-0.526920\pi\)
−0.0844715 + 0.996426i \(0.526920\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 18.2854 0.825206 0.412603 0.910911i \(-0.364620\pi\)
0.412603 + 0.910911i \(0.364620\pi\)
\(492\) 0 0
\(493\) −12.7637 −0.574847
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 27.3256 1.22572
\(498\) 0 0
\(499\) −17.1753 −0.768871 −0.384435 0.923152i \(-0.625604\pi\)
−0.384435 + 0.923152i \(0.625604\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 9.12404 0.406821 0.203410 0.979094i \(-0.434797\pi\)
0.203410 + 0.979094i \(0.434797\pi\)
\(504\) 0 0
\(505\) −33.6785 −1.49867
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 9.70196 0.430032 0.215016 0.976611i \(-0.431020\pi\)
0.215016 + 0.976611i \(0.431020\pi\)
\(510\) 0 0
\(511\) −31.5709 −1.39661
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −12.0000 −0.528783
\(516\) 0 0
\(517\) −5.59914 −0.246250
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 4.32237 0.189367 0.0946833 0.995507i \(-0.469816\pi\)
0.0946833 + 0.995507i \(0.469816\pi\)
\(522\) 0 0
\(523\) −1.50808 −0.0659438 −0.0329719 0.999456i \(-0.510497\pi\)
−0.0329719 + 0.999456i \(0.510497\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.76409 0.251088
\(528\) 0 0
\(529\) 41.4023 1.80010
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 63.0516 2.73107
\(534\) 0 0
\(535\) 9.80857 0.424061
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −1.18356 −0.0509794
\(540\) 0 0
\(541\) −12.9933 −0.558626 −0.279313 0.960200i \(-0.590107\pi\)
−0.279313 + 0.960200i \(0.590107\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −12.1718 −0.521382
\(546\) 0 0
\(547\) 10.5174 0.449693 0.224847 0.974394i \(-0.427812\pi\)
0.224847 + 0.974394i \(0.427812\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −6.38184 −0.271875
\(552\) 0 0
\(553\) 33.4278 1.42149
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −3.14710 −0.133347 −0.0666735 0.997775i \(-0.521239\pi\)
−0.0666735 + 0.997775i \(0.521239\pi\)
\(558\) 0 0
\(559\) −49.2987 −2.08511
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 22.8175 0.961643 0.480822 0.876818i \(-0.340338\pi\)
0.480822 + 0.876818i \(0.340338\pi\)
\(564\) 0 0
\(565\) −5.23453 −0.220218
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −25.7638 −1.08008 −0.540038 0.841641i \(-0.681590\pi\)
−0.540038 + 0.841641i \(0.681590\pi\)
\(570\) 0 0
\(571\) −17.2687 −0.722672 −0.361336 0.932436i \(-0.617679\pi\)
−0.361336 + 0.932436i \(0.617679\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −3.74624 −0.156229
\(576\) 0 0
\(577\) −42.2880 −1.76047 −0.880235 0.474537i \(-0.842615\pi\)
−0.880235 + 0.474537i \(0.842615\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 26.1309 1.08409
\(582\) 0 0
\(583\) −7.49514 −0.310417
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 11.9108 0.491610 0.245805 0.969319i \(-0.420948\pi\)
0.245805 + 0.969319i \(0.420948\pi\)
\(588\) 0 0
\(589\) 2.88204 0.118753
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 12.3484 0.507090 0.253545 0.967324i \(-0.418403\pi\)
0.253545 + 0.967324i \(0.418403\pi\)
\(594\) 0 0
\(595\) −10.9336 −0.448235
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −28.7942 −1.17650 −0.588250 0.808679i \(-0.700183\pi\)
−0.588250 + 0.808679i \(0.700183\pi\)
\(600\) 0 0
\(601\) −23.9054 −0.975120 −0.487560 0.873090i \(-0.662113\pi\)
−0.487560 + 0.873090i \(0.662113\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −24.3260 −0.988993
\(606\) 0 0
\(607\) 16.3220 0.662488 0.331244 0.943545i \(-0.392532\pi\)
0.331244 + 0.943545i \(0.392532\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 44.5565 1.80256
\(612\) 0 0
\(613\) −18.7422 −0.756990 −0.378495 0.925603i \(-0.623558\pi\)
−0.378495 + 0.925603i \(0.623558\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1.85514 −0.0746853 −0.0373426 0.999303i \(-0.511889\pi\)
−0.0373426 + 0.999303i \(0.511889\pi\)
\(618\) 0 0
\(619\) −13.0506 −0.524549 −0.262274 0.964993i \(-0.584473\pi\)
−0.262274 + 0.964993i \(0.584473\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −0.353871 −0.0141775
\(624\) 0 0
\(625\) −27.1162 −1.08465
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −14.9838 −0.597445
\(630\) 0 0
\(631\) −3.16495 −0.125995 −0.0629973 0.998014i \(-0.520066\pi\)
−0.0629973 + 0.998014i \(0.520066\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 8.80089 0.349253
\(636\) 0 0
\(637\) 9.41844 0.373172
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −10.8268 −0.427632 −0.213816 0.976874i \(-0.568589\pi\)
−0.213816 + 0.976874i \(0.568589\pi\)
\(642\) 0 0
\(643\) −5.54029 −0.218488 −0.109244 0.994015i \(-0.534843\pi\)
−0.109244 + 0.994015i \(0.534843\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 30.6056 1.20323 0.601616 0.798786i \(-0.294524\pi\)
0.601616 + 0.798786i \(0.294524\pi\)
\(648\) 0 0
\(649\) 2.93726 0.115298
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −8.56192 −0.335054 −0.167527 0.985868i \(-0.553578\pi\)
−0.167527 + 0.985868i \(0.553578\pi\)
\(654\) 0 0
\(655\) 7.96012 0.311027
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 11.8337 0.460974 0.230487 0.973075i \(-0.425968\pi\)
0.230487 + 0.973075i \(0.425968\pi\)
\(660\) 0 0
\(661\) 24.9735 0.971357 0.485679 0.874137i \(-0.338573\pi\)
0.485679 + 0.874137i \(0.338573\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −5.46682 −0.211994
\(666\) 0 0
\(667\) −51.2149 −1.98305
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −6.18677 −0.238838
\(672\) 0 0
\(673\) 20.3306 0.783687 0.391844 0.920032i \(-0.371837\pi\)
0.391844 + 0.920032i \(0.371837\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −10.7600 −0.413542 −0.206771 0.978389i \(-0.566296\pi\)
−0.206771 + 0.978389i \(0.566296\pi\)
\(678\) 0 0
\(679\) −12.5063 −0.479947
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −20.3557 −0.778889 −0.389445 0.921050i \(-0.627333\pi\)
−0.389445 + 0.921050i \(0.627333\pi\)
\(684\) 0 0
\(685\) −18.1032 −0.691687
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 59.6443 2.27227
\(690\) 0 0
\(691\) 6.02510 0.229206 0.114603 0.993411i \(-0.463440\pi\)
0.114603 + 0.993411i \(0.463440\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −35.8960 −1.36161
\(696\) 0 0
\(697\) 20.5278 0.777544
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −3.68489 −0.139176 −0.0695881 0.997576i \(-0.522169\pi\)
−0.0695881 + 0.997576i \(0.522169\pi\)
\(702\) 0 0
\(703\) −7.49192 −0.282563
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −33.6785 −1.26661
\(708\) 0 0
\(709\) −7.24122 −0.271950 −0.135975 0.990712i \(-0.543417\pi\)
−0.135975 + 0.990712i \(0.543417\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 23.1287 0.866176
\(714\) 0 0
\(715\) −11.0878 −0.414662
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −26.7433 −0.997356 −0.498678 0.866787i \(-0.666181\pi\)
−0.498678 + 0.866787i \(0.666181\pi\)
\(720\) 0 0
\(721\) −12.0000 −0.446903
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.97914 0.110643
\(726\) 0 0
\(727\) −2.79783 −0.103766 −0.0518829 0.998653i \(-0.516522\pi\)
−0.0518829 + 0.998653i \(0.516522\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −16.0502 −0.593638
\(732\) 0 0
\(733\) −11.2936 −0.417140 −0.208570 0.978007i \(-0.566881\pi\)
−0.208570 + 0.978007i \(0.566881\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −9.99534 −0.368183
\(738\) 0 0
\(739\) −2.95301 −0.108628 −0.0543141 0.998524i \(-0.517297\pi\)
−0.0543141 + 0.998524i \(0.517297\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −42.9520 −1.57576 −0.787879 0.615830i \(-0.788821\pi\)
−0.787879 + 0.615830i \(0.788821\pi\)
\(744\) 0 0
\(745\) 36.2807 1.32922
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 9.80857 0.358397
\(750\) 0 0
\(751\) 25.4910 0.930178 0.465089 0.885264i \(-0.346022\pi\)
0.465089 + 0.885264i \(0.346022\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −52.0960 −1.89597
\(756\) 0 0
\(757\) 1.81930 0.0661237 0.0330619 0.999453i \(-0.489474\pi\)
0.0330619 + 0.999453i \(0.489474\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −45.3869 −1.64528 −0.822638 0.568566i \(-0.807498\pi\)
−0.822638 + 0.568566i \(0.807498\pi\)
\(762\) 0 0
\(763\) −12.1718 −0.440649
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −23.3740 −0.843985
\(768\) 0 0
\(769\) 8.28152 0.298639 0.149320 0.988789i \(-0.452292\pi\)
0.149320 + 0.988789i \(0.452292\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −36.0383 −1.29621 −0.648104 0.761552i \(-0.724438\pi\)
−0.648104 + 0.761552i \(0.724438\pi\)
\(774\) 0 0
\(775\) −1.34538 −0.0483276
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 10.2639 0.367742
\(780\) 0 0
\(781\) 9.02189 0.322828
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −30.2740 −1.08053
\(786\) 0 0
\(787\) −35.4727 −1.26446 −0.632232 0.774779i \(-0.717861\pi\)
−0.632232 + 0.774779i \(0.717861\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −5.23453 −0.186119
\(792\) 0 0
\(793\) 49.2327 1.74831
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 8.23208 0.291595 0.145798 0.989314i \(-0.453425\pi\)
0.145798 + 0.989314i \(0.453425\pi\)
\(798\) 0 0
\(799\) 14.5063 0.513195
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −10.4235 −0.367838
\(804\) 0 0
\(805\) −43.8718 −1.54628
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 4.34355 0.152711 0.0763555 0.997081i \(-0.475672\pi\)
0.0763555 + 0.997081i \(0.475672\pi\)
\(810\) 0 0
\(811\) 2.98579 0.104845 0.0524226 0.998625i \(-0.483306\pi\)
0.0524226 + 0.998625i \(0.483306\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −4.61755 −0.161746
\(816\) 0 0
\(817\) −8.02510 −0.280763
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −5.57362 −0.194521 −0.0972604 0.995259i \(-0.531008\pi\)
−0.0972604 + 0.995259i \(0.531008\pi\)
\(822\) 0 0
\(823\) 7.37033 0.256914 0.128457 0.991715i \(-0.458998\pi\)
0.128457 + 0.991715i \(0.458998\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 8.30550 0.288810 0.144405 0.989519i \(-0.453873\pi\)
0.144405 + 0.989519i \(0.453873\pi\)
\(828\) 0 0
\(829\) 27.6777 0.961285 0.480643 0.876917i \(-0.340403\pi\)
0.480643 + 0.876917i \(0.340403\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 3.06637 0.106243
\(834\) 0 0
\(835\) 3.42959 0.118686
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 39.1073 1.35013 0.675066 0.737757i \(-0.264115\pi\)
0.675066 + 0.737757i \(0.264115\pi\)
\(840\) 0 0
\(841\) 11.7278 0.404408
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 57.8386 1.98971
\(846\) 0 0
\(847\) −24.3260 −0.835851
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −60.1234 −2.06100
\(852\) 0 0
\(853\) 48.1127 1.64735 0.823673 0.567064i \(-0.191921\pi\)
0.823673 + 0.567064i \(0.191921\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −18.2406 −0.623087 −0.311544 0.950232i \(-0.600846\pi\)
−0.311544 + 0.950232i \(0.600846\pi\)
\(858\) 0 0
\(859\) −19.8903 −0.678647 −0.339324 0.940670i \(-0.610198\pi\)
−0.339324 + 0.940670i \(0.610198\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 9.69271 0.329944 0.164972 0.986298i \(-0.447247\pi\)
0.164972 + 0.986298i \(0.447247\pi\)
\(864\) 0 0
\(865\) −33.6852 −1.14533
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 11.0366 0.374391
\(870\) 0 0
\(871\) 79.5403 2.69512
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −24.7821 −0.837787
\(876\) 0 0
\(877\) 3.59203 0.121294 0.0606472 0.998159i \(-0.480684\pi\)
0.0606472 + 0.998159i \(0.480684\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 51.2557 1.72685 0.863425 0.504477i \(-0.168315\pi\)
0.863425 + 0.504477i \(0.168315\pi\)
\(882\) 0 0
\(883\) 8.78878 0.295766 0.147883 0.989005i \(-0.452754\pi\)
0.147883 + 0.989005i \(0.452754\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −38.8501 −1.30446 −0.652230 0.758021i \(-0.726166\pi\)
−0.652230 + 0.758021i \(0.726166\pi\)
\(888\) 0 0
\(889\) 8.80089 0.295173
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 7.25314 0.242717
\(894\) 0 0
\(895\) 2.43461 0.0813799
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −18.3927 −0.613432
\(900\) 0 0
\(901\) 19.4184 0.646922
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 19.0982 0.634844
\(906\) 0 0
\(907\) 8.12159 0.269673 0.134836 0.990868i \(-0.456949\pi\)
0.134836 + 0.990868i \(0.456949\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 57.5255 1.90591 0.952953 0.303117i \(-0.0980274\pi\)
0.952953 + 0.303117i \(0.0980274\pi\)
\(912\) 0 0
\(913\) 8.62746 0.285527
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 7.96012 0.262866
\(918\) 0 0
\(919\) 36.3614 1.19945 0.599726 0.800205i \(-0.295276\pi\)
0.599726 + 0.800205i \(0.295276\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −71.7938 −2.36312
\(924\) 0 0
\(925\) 3.49734 0.114992
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −4.61392 −0.151378 −0.0756889 0.997131i \(-0.524116\pi\)
−0.0756889 + 0.997131i \(0.524116\pi\)
\(930\) 0 0
\(931\) 1.53318 0.0502481
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −3.60988 −0.118056
\(936\) 0 0
\(937\) −37.5024 −1.22515 −0.612575 0.790413i \(-0.709866\pi\)
−0.612575 + 0.790413i \(0.709866\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 41.5103 1.35320 0.676599 0.736352i \(-0.263453\pi\)
0.676599 + 0.736352i \(0.263453\pi\)
\(942\) 0 0
\(943\) 82.3687 2.68229
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −11.7289 −0.381138 −0.190569 0.981674i \(-0.561033\pi\)
−0.190569 + 0.981674i \(0.561033\pi\)
\(948\) 0 0
\(949\) 82.9476 2.69259
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 20.7971 0.673683 0.336841 0.941561i \(-0.390641\pi\)
0.336841 + 0.941561i \(0.390641\pi\)
\(954\) 0 0
\(955\) 37.2364 1.20494
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −18.1032 −0.584582
\(960\) 0 0
\(961\) −22.6938 −0.732059
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 59.5488 1.91694
\(966\) 0 0
\(967\) −10.0753 −0.324000 −0.162000 0.986791i \(-0.551794\pi\)
−0.162000 + 0.986791i \(0.551794\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −42.8526 −1.37521 −0.687603 0.726087i \(-0.741337\pi\)
−0.687603 + 0.726087i \(0.741337\pi\)
\(972\) 0 0
\(973\) −35.8960 −1.15077
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 58.9254 1.88519 0.942595 0.333938i \(-0.108378\pi\)
0.942595 + 0.333938i \(0.108378\pi\)
\(978\) 0 0
\(979\) −0.116835 −0.00373406
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 29.6979 0.947215 0.473608 0.880736i \(-0.342952\pi\)
0.473608 + 0.880736i \(0.342952\pi\)
\(984\) 0 0
\(985\) −27.5059 −0.876410
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −64.4023 −2.04787
\(990\) 0 0
\(991\) 11.8887 0.377658 0.188829 0.982010i \(-0.439531\pi\)
0.188829 + 0.982010i \(0.439531\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −1.42693 −0.0452368
\(996\) 0 0
\(997\) 61.9964 1.96345 0.981723 0.190315i \(-0.0609511\pi\)
0.981723 + 0.190315i \(0.0609511\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8208.2.a.bs.1.4 4
3.2 odd 2 8208.2.a.bx.1.1 4
4.3 odd 2 4104.2.a.k.1.4 4
12.11 even 2 4104.2.a.l.1.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4104.2.a.k.1.4 4 4.3 odd 2
4104.2.a.l.1.1 yes 4 12.11 even 2
8208.2.a.bs.1.4 4 1.1 even 1 trivial
8208.2.a.bx.1.1 4 3.2 odd 2