Properties

Label 2-8208-1.1-c1-0-135
Degree $2$
Conductor $8208$
Sign $-1$
Analytic cond. $65.5412$
Root an. cond. $8.09575$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.58·5-s + 1.11·7-s − 0.111·11-s − 0.888·13-s + 17-s − 19-s + 4.98·23-s − 2.47·25-s − 9.98·29-s − 1.51·31-s + 1.76·35-s − 3.69·37-s − 8.38·41-s − 4.98·43-s − 5.79·47-s − 5.76·49-s + 2.69·53-s − 0.176·55-s − 12.2·59-s − 8.28·61-s − 1.41·65-s + 12.6·67-s − 4.33·71-s − 3.60·73-s − 0.123·77-s + 2.74·79-s + 6.97·83-s + ⋯
L(s)  = 1  + 0.710·5-s + 0.420·7-s − 0.0335·11-s − 0.246·13-s + 0.242·17-s − 0.229·19-s + 1.03·23-s − 0.495·25-s − 1.85·29-s − 0.271·31-s + 0.298·35-s − 0.608·37-s − 1.30·41-s − 0.760·43-s − 0.845·47-s − 0.823·49-s + 0.370·53-s − 0.0238·55-s − 1.59·59-s − 1.06·61-s − 0.175·65-s + 1.54·67-s − 0.514·71-s − 0.421·73-s − 0.0140·77-s + 0.308·79-s + 0.765·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8208\)    =    \(2^{4} \cdot 3^{3} \cdot 19\)
Sign: $-1$
Analytic conductor: \(65.5412\)
Root analytic conductor: \(8.09575\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8208,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 + T \)
good5 \( 1 - 1.58T + 5T^{2} \)
7 \( 1 - 1.11T + 7T^{2} \)
11 \( 1 + 0.111T + 11T^{2} \)
13 \( 1 + 0.888T + 13T^{2} \)
17 \( 1 - T + 17T^{2} \)
23 \( 1 - 4.98T + 23T^{2} \)
29 \( 1 + 9.98T + 29T^{2} \)
31 \( 1 + 1.51T + 31T^{2} \)
37 \( 1 + 3.69T + 37T^{2} \)
41 \( 1 + 8.38T + 41T^{2} \)
43 \( 1 + 4.98T + 43T^{2} \)
47 \( 1 + 5.79T + 47T^{2} \)
53 \( 1 - 2.69T + 53T^{2} \)
59 \( 1 + 12.2T + 59T^{2} \)
61 \( 1 + 8.28T + 61T^{2} \)
67 \( 1 - 12.6T + 67T^{2} \)
71 \( 1 + 4.33T + 71T^{2} \)
73 \( 1 + 3.60T + 73T^{2} \)
79 \( 1 - 2.74T + 79T^{2} \)
83 \( 1 - 6.97T + 83T^{2} \)
89 \( 1 - 14.3T + 89T^{2} \)
97 \( 1 - 15.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.52953915775685044470046877348, −6.72891264475015109519843448839, −6.10689205710971971468104957582, −5.22987695437916724385374473491, −4.93898315353814507476687996295, −3.80544199528596568579394978248, −3.11847222779783492775044742884, −2.02580115326791838275075771965, −1.50508081005203784002152917990, 0, 1.50508081005203784002152917990, 2.02580115326791838275075771965, 3.11847222779783492775044742884, 3.80544199528596568579394978248, 4.93898315353814507476687996295, 5.22987695437916724385374473491, 6.10689205710971971468104957582, 6.72891264475015109519843448839, 7.52953915775685044470046877348

Graph of the $Z$-function along the critical line