Properties

Label 8208.2.a.bj.1.3
Level $8208$
Weight $2$
Character 8208.1
Self dual yes
Analytic conductor $65.541$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8208,2,Mod(1,8208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8208.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8208 = 2^{4} \cdot 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8208.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,-1,0,3,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(65.5412099791\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.321.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 4104)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.69963\) of defining polynomial
Character \(\chi\) \(=\) 8208.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.58836 q^{5} +1.11126 q^{7} -0.111264 q^{11} -0.888736 q^{13} +1.00000 q^{17} -1.00000 q^{19} +4.98762 q^{23} -2.47710 q^{25} -9.98762 q^{29} -1.51052 q^{31} +1.76509 q^{35} -3.69963 q^{37} -8.38688 q^{41} -4.98762 q^{43} -5.79851 q^{47} -5.76509 q^{49} +2.69963 q^{53} -0.176728 q^{55} -12.2756 q^{59} -8.28799 q^{61} -1.41164 q^{65} +12.6749 q^{67} -4.33379 q^{71} -3.60074 q^{73} -0.123644 q^{77} +2.74543 q^{79} +6.97524 q^{83} +1.58836 q^{85} +14.3090 q^{89} -0.987620 q^{91} -1.58836 q^{95} +15.0741 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{5} + 3 q^{7} - 3 q^{13} + 3 q^{17} - 3 q^{19} - 3 q^{23} - 2 q^{25} - 12 q^{29} + 8 q^{31} - 12 q^{35} - 5 q^{37} + 5 q^{41} + 3 q^{43} + 7 q^{47} + 2 q^{53} + 11 q^{55} - 7 q^{59} - 13 q^{61}+ \cdots - 9 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.58836 0.710338 0.355169 0.934802i \(-0.384423\pi\)
0.355169 + 0.934802i \(0.384423\pi\)
\(6\) 0 0
\(7\) 1.11126 0.420018 0.210009 0.977699i \(-0.432651\pi\)
0.210009 + 0.977699i \(0.432651\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.111264 −0.0335474 −0.0167737 0.999859i \(-0.505339\pi\)
−0.0167737 + 0.999859i \(0.505339\pi\)
\(12\) 0 0
\(13\) −0.888736 −0.246491 −0.123245 0.992376i \(-0.539330\pi\)
−0.123245 + 0.992376i \(0.539330\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.00000 0.242536 0.121268 0.992620i \(-0.461304\pi\)
0.121268 + 0.992620i \(0.461304\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.98762 1.03999 0.519995 0.854169i \(-0.325934\pi\)
0.519995 + 0.854169i \(0.325934\pi\)
\(24\) 0 0
\(25\) −2.47710 −0.495420
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −9.98762 −1.85465 −0.927327 0.374251i \(-0.877900\pi\)
−0.927327 + 0.374251i \(0.877900\pi\)
\(30\) 0 0
\(31\) −1.51052 −0.271297 −0.135649 0.990757i \(-0.543312\pi\)
−0.135649 + 0.990757i \(0.543312\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.76509 0.298355
\(36\) 0 0
\(37\) −3.69963 −0.608215 −0.304108 0.952638i \(-0.598358\pi\)
−0.304108 + 0.952638i \(0.598358\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −8.38688 −1.30981 −0.654905 0.755711i \(-0.727291\pi\)
−0.654905 + 0.755711i \(0.727291\pi\)
\(42\) 0 0
\(43\) −4.98762 −0.760605 −0.380302 0.924862i \(-0.624180\pi\)
−0.380302 + 0.924862i \(0.624180\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −5.79851 −0.845800 −0.422900 0.906176i \(-0.638988\pi\)
−0.422900 + 0.906176i \(0.638988\pi\)
\(48\) 0 0
\(49\) −5.76509 −0.823585
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 2.69963 0.370822 0.185411 0.982661i \(-0.440638\pi\)
0.185411 + 0.982661i \(0.440638\pi\)
\(54\) 0 0
\(55\) −0.176728 −0.0238300
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −12.2756 −1.59815 −0.799074 0.601232i \(-0.794677\pi\)
−0.799074 + 0.601232i \(0.794677\pi\)
\(60\) 0 0
\(61\) −8.28799 −1.06117 −0.530584 0.847632i \(-0.678027\pi\)
−0.530584 + 0.847632i \(0.678027\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.41164 −0.175092
\(66\) 0 0
\(67\) 12.6749 1.54848 0.774241 0.632891i \(-0.218132\pi\)
0.774241 + 0.632891i \(0.218132\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −4.33379 −0.514327 −0.257163 0.966368i \(-0.582788\pi\)
−0.257163 + 0.966368i \(0.582788\pi\)
\(72\) 0 0
\(73\) −3.60074 −0.421435 −0.210718 0.977547i \(-0.567580\pi\)
−0.210718 + 0.977547i \(0.567580\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.123644 −0.0140905
\(78\) 0 0
\(79\) 2.74543 0.308885 0.154442 0.988002i \(-0.450642\pi\)
0.154442 + 0.988002i \(0.450642\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.97524 0.765632 0.382816 0.923825i \(-0.374954\pi\)
0.382816 + 0.923825i \(0.374954\pi\)
\(84\) 0 0
\(85\) 1.58836 0.172282
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 14.3090 1.51675 0.758377 0.651816i \(-0.225993\pi\)
0.758377 + 0.651816i \(0.225993\pi\)
\(90\) 0 0
\(91\) −0.987620 −0.103531
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.58836 −0.162963
\(96\) 0 0
\(97\) 15.0741 1.53055 0.765273 0.643706i \(-0.222604\pi\)
0.765273 + 0.643706i \(0.222604\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −8.51052 −0.846828 −0.423414 0.905936i \(-0.639168\pi\)
−0.423414 + 0.905936i \(0.639168\pi\)
\(102\) 0 0
\(103\) 8.36584 0.824310 0.412155 0.911114i \(-0.364776\pi\)
0.412155 + 0.911114i \(0.364776\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.01238 −0.194544 −0.0972720 0.995258i \(-0.531012\pi\)
−0.0972720 + 0.995258i \(0.531012\pi\)
\(108\) 0 0
\(109\) −13.4327 −1.28662 −0.643309 0.765607i \(-0.722439\pi\)
−0.643309 + 0.765607i \(0.722439\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −9.65383 −0.908156 −0.454078 0.890962i \(-0.650031\pi\)
−0.454078 + 0.890962i \(0.650031\pi\)
\(114\) 0 0
\(115\) 7.92216 0.738745
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.11126 0.101869
\(120\) 0 0
\(121\) −10.9876 −0.998875
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.8764 −1.06225
\(126\) 0 0
\(127\) 10.0210 0.889224 0.444612 0.895723i \(-0.353342\pi\)
0.444612 + 0.895723i \(0.353342\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −10.6080 −0.926828 −0.463414 0.886142i \(-0.653376\pi\)
−0.463414 + 0.886142i \(0.653376\pi\)
\(132\) 0 0
\(133\) −1.11126 −0.0963588
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4.31275 −0.368463 −0.184232 0.982883i \(-0.558980\pi\)
−0.184232 + 0.982883i \(0.558980\pi\)
\(138\) 0 0
\(139\) 1.02476 0.0869190 0.0434595 0.999055i \(-0.486162\pi\)
0.0434595 + 0.999055i \(0.486162\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.0988844 0.00826913
\(144\) 0 0
\(145\) −15.8640 −1.31743
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2.88874 0.236654 0.118327 0.992975i \(-0.462247\pi\)
0.118327 + 0.992975i \(0.462247\pi\)
\(150\) 0 0
\(151\) −4.05308 −0.329835 −0.164918 0.986307i \(-0.552736\pi\)
−0.164918 + 0.986307i \(0.552736\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2.39926 −0.192713
\(156\) 0 0
\(157\) −12.1520 −0.969833 −0.484916 0.874561i \(-0.661150\pi\)
−0.484916 + 0.874561i \(0.661150\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 5.54256 0.436815
\(162\) 0 0
\(163\) 1.92078 0.150447 0.0752235 0.997167i \(-0.476033\pi\)
0.0752235 + 0.997167i \(0.476033\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.47710 −0.114301 −0.0571507 0.998366i \(-0.518202\pi\)
−0.0571507 + 0.998366i \(0.518202\pi\)
\(168\) 0 0
\(169\) −12.2101 −0.939242
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 9.45234 0.718648 0.359324 0.933213i \(-0.383007\pi\)
0.359324 + 0.933213i \(0.383007\pi\)
\(174\) 0 0
\(175\) −2.75271 −0.208085
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −19.6414 −1.46807 −0.734035 0.679111i \(-0.762365\pi\)
−0.734035 + 0.679111i \(0.762365\pi\)
\(180\) 0 0
\(181\) 19.4400 1.44496 0.722480 0.691391i \(-0.243002\pi\)
0.722480 + 0.691391i \(0.243002\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −5.87636 −0.432038
\(186\) 0 0
\(187\) −0.111264 −0.00813644
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.93454 0.357051 0.178525 0.983935i \(-0.442867\pi\)
0.178525 + 0.983935i \(0.442867\pi\)
\(192\) 0 0
\(193\) 15.0197 1.08114 0.540570 0.841299i \(-0.318209\pi\)
0.540570 + 0.841299i \(0.318209\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −12.8319 −0.914237 −0.457119 0.889406i \(-0.651119\pi\)
−0.457119 + 0.889406i \(0.651119\pi\)
\(198\) 0 0
\(199\) 3.03342 0.215033 0.107517 0.994203i \(-0.465710\pi\)
0.107517 + 0.994203i \(0.465710\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −11.0989 −0.778989
\(204\) 0 0
\(205\) −13.3214 −0.930408
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.111264 0.00769630
\(210\) 0 0
\(211\) 26.2051 1.80403 0.902015 0.431704i \(-0.142088\pi\)
0.902015 + 0.431704i \(0.142088\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −7.92216 −0.540287
\(216\) 0 0
\(217\) −1.67859 −0.113950
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −0.888736 −0.0597828
\(222\) 0 0
\(223\) 4.87636 0.326545 0.163272 0.986581i \(-0.447795\pi\)
0.163272 + 0.986581i \(0.447795\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2.76647 0.183617 0.0918085 0.995777i \(-0.470735\pi\)
0.0918085 + 0.995777i \(0.470735\pi\)
\(228\) 0 0
\(229\) −8.41164 −0.555857 −0.277928 0.960602i \(-0.589648\pi\)
−0.277928 + 0.960602i \(0.589648\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 8.33379 0.545965 0.272982 0.962019i \(-0.411990\pi\)
0.272982 + 0.962019i \(0.411990\pi\)
\(234\) 0 0
\(235\) −9.21015 −0.600804
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 7.67487 0.496446 0.248223 0.968703i \(-0.420153\pi\)
0.248223 + 0.968703i \(0.420153\pi\)
\(240\) 0 0
\(241\) −18.2101 −1.17302 −0.586509 0.809942i \(-0.699498\pi\)
−0.586509 + 0.809942i \(0.699498\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −9.15706 −0.585023
\(246\) 0 0
\(247\) 0.888736 0.0565489
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −16.2880 −1.02809 −0.514044 0.857764i \(-0.671853\pi\)
−0.514044 + 0.857764i \(0.671853\pi\)
\(252\) 0 0
\(253\) −0.554943 −0.0348890
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.41026 −0.0879695 −0.0439848 0.999032i \(-0.514005\pi\)
−0.0439848 + 0.999032i \(0.514005\pi\)
\(258\) 0 0
\(259\) −4.11126 −0.255462
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4.56732 0.281633 0.140817 0.990036i \(-0.455027\pi\)
0.140817 + 0.990036i \(0.455027\pi\)
\(264\) 0 0
\(265\) 4.28799 0.263409
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 23.3942 1.42637 0.713184 0.700977i \(-0.247253\pi\)
0.713184 + 0.700977i \(0.247253\pi\)
\(270\) 0 0
\(271\) −16.6428 −1.01098 −0.505490 0.862833i \(-0.668688\pi\)
−0.505490 + 0.862833i \(0.668688\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.275612 0.0166201
\(276\) 0 0
\(277\) 12.4734 0.749453 0.374726 0.927135i \(-0.377737\pi\)
0.374726 + 0.927135i \(0.377737\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −11.5760 −0.690565 −0.345283 0.938499i \(-0.612217\pi\)
−0.345283 + 0.938499i \(0.612217\pi\)
\(282\) 0 0
\(283\) 17.3993 1.03428 0.517139 0.855901i \(-0.326997\pi\)
0.517139 + 0.855901i \(0.326997\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −9.32004 −0.550144
\(288\) 0 0
\(289\) −16.0000 −0.941176
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 7.22981 0.422370 0.211185 0.977446i \(-0.432268\pi\)
0.211185 + 0.977446i \(0.432268\pi\)
\(294\) 0 0
\(295\) −19.4981 −1.13523
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −4.43268 −0.256348
\(300\) 0 0
\(301\) −5.54256 −0.319468
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −13.1643 −0.753788
\(306\) 0 0
\(307\) 30.9505 1.76644 0.883219 0.468961i \(-0.155372\pi\)
0.883219 + 0.468961i \(0.155372\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −9.10026 −0.516029 −0.258014 0.966141i \(-0.583068\pi\)
−0.258014 + 0.966141i \(0.583068\pi\)
\(312\) 0 0
\(313\) 4.49086 0.253838 0.126919 0.991913i \(-0.459491\pi\)
0.126919 + 0.991913i \(0.459491\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −31.8378 −1.78819 −0.894096 0.447876i \(-0.852181\pi\)
−0.894096 + 0.447876i \(0.852181\pi\)
\(318\) 0 0
\(319\) 1.11126 0.0622188
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1.00000 −0.0556415
\(324\) 0 0
\(325\) 2.20149 0.122117
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −6.44368 −0.355252
\(330\) 0 0
\(331\) 33.0480 1.81648 0.908241 0.418448i \(-0.137426\pi\)
0.908241 + 0.418448i \(0.137426\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 20.1323 1.09995
\(336\) 0 0
\(337\) 22.7280 1.23807 0.619035 0.785363i \(-0.287524\pi\)
0.619035 + 0.785363i \(0.287524\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.168067 0.00910133
\(342\) 0 0
\(343\) −14.1854 −0.765939
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6.00866 0.322562 0.161281 0.986909i \(-0.448437\pi\)
0.161281 + 0.986909i \(0.448437\pi\)
\(348\) 0 0
\(349\) −9.07784 −0.485926 −0.242963 0.970036i \(-0.578119\pi\)
−0.242963 + 0.970036i \(0.578119\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −12.1891 −0.648761 −0.324380 0.945927i \(-0.605156\pi\)
−0.324380 + 0.945927i \(0.605156\pi\)
\(354\) 0 0
\(355\) −6.88364 −0.365346
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −3.41164 −0.180059 −0.0900296 0.995939i \(-0.528696\pi\)
−0.0900296 + 0.995939i \(0.528696\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −5.71929 −0.299361
\(366\) 0 0
\(367\) 11.8640 0.619295 0.309647 0.950851i \(-0.399789\pi\)
0.309647 + 0.950851i \(0.399789\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3.00000 0.155752
\(372\) 0 0
\(373\) 30.7417 1.59175 0.795873 0.605464i \(-0.207012\pi\)
0.795873 + 0.605464i \(0.207012\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 8.87636 0.457156
\(378\) 0 0
\(379\) 16.6945 0.857541 0.428770 0.903414i \(-0.358947\pi\)
0.428770 + 0.903414i \(0.358947\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −19.7280 −1.00805 −0.504026 0.863689i \(-0.668148\pi\)
−0.504026 + 0.863689i \(0.668148\pi\)
\(384\) 0 0
\(385\) −0.196391 −0.0100090
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −23.2298 −1.17780 −0.588899 0.808207i \(-0.700438\pi\)
−0.588899 + 0.808207i \(0.700438\pi\)
\(390\) 0 0
\(391\) 4.98762 0.252235
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 4.36074 0.219413
\(396\) 0 0
\(397\) −2.44506 −0.122714 −0.0613569 0.998116i \(-0.519543\pi\)
−0.0613569 + 0.998116i \(0.519543\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.28799 0.164194 0.0820972 0.996624i \(-0.473838\pi\)
0.0820972 + 0.996624i \(0.473838\pi\)
\(402\) 0 0
\(403\) 1.34245 0.0668724
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0.411636 0.0204040
\(408\) 0 0
\(409\) −0.0544615 −0.00269295 −0.00134647 0.999999i \(-0.500429\pi\)
−0.00134647 + 0.999999i \(0.500429\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −13.6414 −0.671252
\(414\) 0 0
\(415\) 11.0792 0.543858
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −24.9011 −1.21650 −0.608250 0.793746i \(-0.708128\pi\)
−0.608250 + 0.793746i \(0.708128\pi\)
\(420\) 0 0
\(421\) −8.15706 −0.397551 −0.198775 0.980045i \(-0.563696\pi\)
−0.198775 + 0.980045i \(0.563696\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.47710 −0.120157
\(426\) 0 0
\(427\) −9.21015 −0.445710
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 38.8355 1.87064 0.935320 0.353803i \(-0.115112\pi\)
0.935320 + 0.353803i \(0.115112\pi\)
\(432\) 0 0
\(433\) −4.27699 −0.205539 −0.102770 0.994705i \(-0.532770\pi\)
−0.102770 + 0.994705i \(0.532770\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −4.98762 −0.238590
\(438\) 0 0
\(439\) −21.4844 −1.02539 −0.512697 0.858570i \(-0.671354\pi\)
−0.512697 + 0.858570i \(0.671354\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −27.7207 −1.31705 −0.658524 0.752559i \(-0.728819\pi\)
−0.658524 + 0.752559i \(0.728819\pi\)
\(444\) 0 0
\(445\) 22.7280 1.07741
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −1.37959 −0.0651070 −0.0325535 0.999470i \(-0.510364\pi\)
−0.0325535 + 0.999470i \(0.510364\pi\)
\(450\) 0 0
\(451\) 0.933159 0.0439407
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1.56870 −0.0735418
\(456\) 0 0
\(457\) −6.14468 −0.287436 −0.143718 0.989619i \(-0.545906\pi\)
−0.143718 + 0.989619i \(0.545906\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −23.8887 −1.11261 −0.556305 0.830978i \(-0.687781\pi\)
−0.556305 + 0.830978i \(0.687781\pi\)
\(462\) 0 0
\(463\) 13.4523 0.625183 0.312592 0.949888i \(-0.398803\pi\)
0.312592 + 0.949888i \(0.398803\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −36.1868 −1.67452 −0.837262 0.546802i \(-0.815845\pi\)
−0.837262 + 0.546802i \(0.815845\pi\)
\(468\) 0 0
\(469\) 14.0851 0.650391
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0.554943 0.0255163
\(474\) 0 0
\(475\) 2.47710 0.113657
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 8.57598 0.391847 0.195923 0.980619i \(-0.437230\pi\)
0.195923 + 0.980619i \(0.437230\pi\)
\(480\) 0 0
\(481\) 3.28799 0.149920
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 23.9432 1.08720
\(486\) 0 0
\(487\) 6.73305 0.305104 0.152552 0.988295i \(-0.451251\pi\)
0.152552 + 0.988295i \(0.451251\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 1.55494 0.0701736 0.0350868 0.999384i \(-0.488829\pi\)
0.0350868 + 0.999384i \(0.488829\pi\)
\(492\) 0 0
\(493\) −9.98762 −0.449820
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −4.81599 −0.216027
\(498\) 0 0
\(499\) −29.0938 −1.30242 −0.651208 0.758899i \(-0.725738\pi\)
−0.651208 + 0.758899i \(0.725738\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 2.67996 0.119494 0.0597469 0.998214i \(-0.480971\pi\)
0.0597469 + 0.998214i \(0.480971\pi\)
\(504\) 0 0
\(505\) −13.5178 −0.601534
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −10.6232 −0.470863 −0.235432 0.971891i \(-0.575650\pi\)
−0.235432 + 0.971891i \(0.575650\pi\)
\(510\) 0 0
\(511\) −4.00138 −0.177011
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 13.2880 0.585539
\(516\) 0 0
\(517\) 0.645167 0.0283744
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 12.7069 0.556700 0.278350 0.960480i \(-0.410213\pi\)
0.278350 + 0.960480i \(0.410213\pi\)
\(522\) 0 0
\(523\) −17.3586 −0.759036 −0.379518 0.925184i \(-0.623910\pi\)
−0.379518 + 0.925184i \(0.623910\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.51052 −0.0657993
\(528\) 0 0
\(529\) 1.87636 0.0815807
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 7.45372 0.322856
\(534\) 0 0
\(535\) −3.19639 −0.138192
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.641448 0.0276291
\(540\) 0 0
\(541\) 9.05446 0.389282 0.194641 0.980875i \(-0.437646\pi\)
0.194641 + 0.980875i \(0.437646\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −21.3360 −0.913933
\(546\) 0 0
\(547\) −36.8058 −1.57370 −0.786851 0.617143i \(-0.788290\pi\)
−0.786851 + 0.617143i \(0.788290\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 9.98762 0.425487
\(552\) 0 0
\(553\) 3.05090 0.129737
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 7.34108 0.311051 0.155526 0.987832i \(-0.450293\pi\)
0.155526 + 0.987832i \(0.450293\pi\)
\(558\) 0 0
\(559\) 4.43268 0.187482
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −33.1148 −1.39562 −0.697812 0.716281i \(-0.745843\pi\)
−0.697812 + 0.716281i \(0.745843\pi\)
\(564\) 0 0
\(565\) −15.3338 −0.645097
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −20.0655 −0.841188 −0.420594 0.907249i \(-0.638178\pi\)
−0.420594 + 0.907249i \(0.638178\pi\)
\(570\) 0 0
\(571\) 42.3053 1.77042 0.885211 0.465189i \(-0.154014\pi\)
0.885211 + 0.465189i \(0.154014\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −12.3548 −0.515232
\(576\) 0 0
\(577\) 30.8923 1.28606 0.643032 0.765840i \(-0.277676\pi\)
0.643032 + 0.765840i \(0.277676\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 7.75133 0.321580
\(582\) 0 0
\(583\) −0.300372 −0.0124401
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −3.63279 −0.149941 −0.0749706 0.997186i \(-0.523886\pi\)
−0.0749706 + 0.997186i \(0.523886\pi\)
\(588\) 0 0
\(589\) 1.51052 0.0622399
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −21.3955 −0.878609 −0.439305 0.898338i \(-0.644775\pi\)
−0.439305 + 0.898338i \(0.644775\pi\)
\(594\) 0 0
\(595\) 1.76509 0.0723617
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −5.28661 −0.216005 −0.108003 0.994151i \(-0.534445\pi\)
−0.108003 + 0.994151i \(0.534445\pi\)
\(600\) 0 0
\(601\) −20.0407 −0.817477 −0.408739 0.912651i \(-0.634031\pi\)
−0.408739 + 0.912651i \(0.634031\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −17.4523 −0.709539
\(606\) 0 0
\(607\) 8.85669 0.359482 0.179741 0.983714i \(-0.442474\pi\)
0.179741 + 0.983714i \(0.442474\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 5.15335 0.208482
\(612\) 0 0
\(613\) 9.80223 0.395908 0.197954 0.980211i \(-0.436570\pi\)
0.197954 + 0.980211i \(0.436570\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 7.09751 0.285735 0.142867 0.989742i \(-0.454368\pi\)
0.142867 + 0.989742i \(0.454368\pi\)
\(618\) 0 0
\(619\) −32.7417 −1.31600 −0.658000 0.753018i \(-0.728597\pi\)
−0.658000 + 0.753018i \(0.728597\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 15.9011 0.637065
\(624\) 0 0
\(625\) −6.47848 −0.259139
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −3.69963 −0.147514
\(630\) 0 0
\(631\) −6.86260 −0.273196 −0.136598 0.990627i \(-0.543617\pi\)
−0.136598 + 0.990627i \(0.543617\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 15.9171 0.631649
\(636\) 0 0
\(637\) 5.12364 0.203006
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 5.80951 0.229462 0.114731 0.993397i \(-0.463399\pi\)
0.114731 + 0.993397i \(0.463399\pi\)
\(642\) 0 0
\(643\) 1.05680 0.0416762 0.0208381 0.999783i \(-0.493367\pi\)
0.0208381 + 0.999783i \(0.493367\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −44.0146 −1.73039 −0.865196 0.501435i \(-0.832806\pi\)
−0.865196 + 0.501435i \(0.832806\pi\)
\(648\) 0 0
\(649\) 1.36584 0.0536137
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −32.4917 −1.27150 −0.635749 0.771896i \(-0.719308\pi\)
−0.635749 + 0.771896i \(0.719308\pi\)
\(654\) 0 0
\(655\) −16.8494 −0.658361
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 2.33751 0.0910565 0.0455283 0.998963i \(-0.485503\pi\)
0.0455283 + 0.998963i \(0.485503\pi\)
\(660\) 0 0
\(661\) 1.42402 0.0553878 0.0276939 0.999616i \(-0.491184\pi\)
0.0276939 + 0.999616i \(0.491184\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.76509 −0.0684473
\(666\) 0 0
\(667\) −49.8145 −1.92882
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0.922156 0.0355995
\(672\) 0 0
\(673\) 9.58327 0.369408 0.184704 0.982794i \(-0.440867\pi\)
0.184704 + 0.982794i \(0.440867\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 2.24219 0.0861744 0.0430872 0.999071i \(-0.486281\pi\)
0.0430872 + 0.999071i \(0.486281\pi\)
\(678\) 0 0
\(679\) 16.7513 0.642857
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −40.5512 −1.55165 −0.775825 0.630948i \(-0.782666\pi\)
−0.775825 + 0.630948i \(0.782666\pi\)
\(684\) 0 0
\(685\) −6.85022 −0.261733
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2.39926 −0.0914044
\(690\) 0 0
\(691\) −7.13093 −0.271273 −0.135637 0.990759i \(-0.543308\pi\)
−0.135637 + 0.990759i \(0.543308\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.62769 0.0617418
\(696\) 0 0
\(697\) −8.38688 −0.317676
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 36.7948 1.38972 0.694860 0.719145i \(-0.255466\pi\)
0.694860 + 0.719145i \(0.255466\pi\)
\(702\) 0 0
\(703\) 3.69963 0.139534
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −9.45744 −0.355684
\(708\) 0 0
\(709\) −41.0690 −1.54238 −0.771190 0.636605i \(-0.780338\pi\)
−0.771190 + 0.636605i \(0.780338\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −7.53390 −0.282147
\(714\) 0 0
\(715\) 0.157064 0.00587388
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 3.63416 0.135531 0.0677657 0.997701i \(-0.478413\pi\)
0.0677657 + 0.997701i \(0.478413\pi\)
\(720\) 0 0
\(721\) 9.29665 0.346225
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 24.7403 0.918833
\(726\) 0 0
\(727\) 12.9912 0.481816 0.240908 0.970548i \(-0.422555\pi\)
0.240908 + 0.970548i \(0.422555\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −4.98762 −0.184474
\(732\) 0 0
\(733\) 35.4895 1.31083 0.655417 0.755267i \(-0.272493\pi\)
0.655417 + 0.755267i \(0.272493\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.41026 −0.0519475
\(738\) 0 0
\(739\) −9.26186 −0.340703 −0.170351 0.985383i \(-0.554490\pi\)
−0.170351 + 0.985383i \(0.554490\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 25.0865 0.920335 0.460167 0.887832i \(-0.347789\pi\)
0.460167 + 0.887832i \(0.347789\pi\)
\(744\) 0 0
\(745\) 4.58836 0.168105
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −2.23629 −0.0817121
\(750\) 0 0
\(751\) −30.7628 −1.12255 −0.561274 0.827630i \(-0.689689\pi\)
−0.561274 + 0.827630i \(0.689689\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −6.43777 −0.234295
\(756\) 0 0
\(757\) −45.5782 −1.65657 −0.828283 0.560309i \(-0.810682\pi\)
−0.828283 + 0.560309i \(0.810682\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 21.4276 0.776749 0.388375 0.921502i \(-0.373037\pi\)
0.388375 + 0.921502i \(0.373037\pi\)
\(762\) 0 0
\(763\) −14.9273 −0.540403
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 10.9098 0.393929
\(768\) 0 0
\(769\) 51.5178 1.85778 0.928890 0.370356i \(-0.120764\pi\)
0.928890 + 0.370356i \(0.120764\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 36.5846 1.31586 0.657929 0.753080i \(-0.271433\pi\)
0.657929 + 0.753080i \(0.271433\pi\)
\(774\) 0 0
\(775\) 3.74171 0.134406
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 8.38688 0.300491
\(780\) 0 0
\(781\) 0.482196 0.0172543
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −19.3017 −0.688909
\(786\) 0 0
\(787\) −11.3301 −0.403874 −0.201937 0.979399i \(-0.564724\pi\)
−0.201937 + 0.979399i \(0.564724\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −10.7280 −0.381442
\(792\) 0 0
\(793\) 7.36584 0.261568
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 22.7242 0.804934 0.402467 0.915435i \(-0.368153\pi\)
0.402467 + 0.915435i \(0.368153\pi\)
\(798\) 0 0
\(799\) −5.79851 −0.205137
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0.400634 0.0141381
\(804\) 0 0
\(805\) 8.80361 0.310286
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −38.0580 −1.33805 −0.669024 0.743240i \(-0.733288\pi\)
−0.669024 + 0.743240i \(0.733288\pi\)
\(810\) 0 0
\(811\) −7.16435 −0.251574 −0.125787 0.992057i \(-0.540146\pi\)
−0.125787 + 0.992057i \(0.540146\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 3.05090 0.106868
\(816\) 0 0
\(817\) 4.98762 0.174495
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −13.5498 −0.472893 −0.236446 0.971645i \(-0.575983\pi\)
−0.236446 + 0.971645i \(0.575983\pi\)
\(822\) 0 0
\(823\) −27.1382 −0.945979 −0.472989 0.881068i \(-0.656825\pi\)
−0.472989 + 0.881068i \(0.656825\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −42.9308 −1.49285 −0.746425 0.665469i \(-0.768232\pi\)
−0.746425 + 0.665469i \(0.768232\pi\)
\(828\) 0 0
\(829\) 13.4981 0.468810 0.234405 0.972139i \(-0.424686\pi\)
0.234405 + 0.972139i \(0.424686\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −5.76509 −0.199749
\(834\) 0 0
\(835\) −2.34617 −0.0811926
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 16.1891 0.558910 0.279455 0.960159i \(-0.409846\pi\)
0.279455 + 0.960159i \(0.409846\pi\)
\(840\) 0 0
\(841\) 70.7526 2.43974
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −19.3942 −0.667179
\(846\) 0 0
\(847\) −12.2101 −0.419546
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −18.4523 −0.632538
\(852\) 0 0
\(853\) 15.9701 0.546807 0.273404 0.961899i \(-0.411851\pi\)
0.273404 + 0.961899i \(0.411851\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 13.9070 0.475055 0.237527 0.971381i \(-0.423663\pi\)
0.237527 + 0.971381i \(0.423663\pi\)
\(858\) 0 0
\(859\) 17.8123 0.607747 0.303873 0.952712i \(-0.401720\pi\)
0.303873 + 0.952712i \(0.401720\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 6.42402 0.218676 0.109338 0.994005i \(-0.465127\pi\)
0.109338 + 0.994005i \(0.465127\pi\)
\(864\) 0 0
\(865\) 15.0138 0.510483
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −0.305468 −0.0103623
\(870\) 0 0
\(871\) −11.2646 −0.381687
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −13.1978 −0.446166
\(876\) 0 0
\(877\) 24.3745 0.823068 0.411534 0.911394i \(-0.364993\pi\)
0.411534 + 0.911394i \(0.364993\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −6.53666 −0.220226 −0.110113 0.993919i \(-0.535121\pi\)
−0.110113 + 0.993919i \(0.535121\pi\)
\(882\) 0 0
\(883\) −19.9913 −0.672762 −0.336381 0.941726i \(-0.609203\pi\)
−0.336381 + 0.941726i \(0.609203\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 18.9208 0.635298 0.317649 0.948208i \(-0.397107\pi\)
0.317649 + 0.948208i \(0.397107\pi\)
\(888\) 0 0
\(889\) 11.1360 0.373490
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 5.79851 0.194040
\(894\) 0 0
\(895\) −31.1978 −1.04283
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 15.0865 0.503163
\(900\) 0 0
\(901\) 2.69963 0.0899377
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 30.8777 1.02641
\(906\) 0 0
\(907\) −5.09751 −0.169260 −0.0846300 0.996412i \(-0.526971\pi\)
−0.0846300 + 0.996412i \(0.526971\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −5.25085 −0.173969 −0.0869843 0.996210i \(-0.527723\pi\)
−0.0869843 + 0.996210i \(0.527723\pi\)
\(912\) 0 0
\(913\) −0.776094 −0.0256850
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −11.7883 −0.389285
\(918\) 0 0
\(919\) 39.0914 1.28951 0.644754 0.764390i \(-0.276960\pi\)
0.644754 + 0.764390i \(0.276960\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 3.85160 0.126777
\(924\) 0 0
\(925\) 9.16435 0.301322
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 14.7280 0.483208 0.241604 0.970375i \(-0.422326\pi\)
0.241604 + 0.970375i \(0.422326\pi\)
\(930\) 0 0
\(931\) 5.76509 0.188943
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −0.176728 −0.00577962
\(936\) 0 0
\(937\) −4.84294 −0.158212 −0.0791059 0.996866i \(-0.525207\pi\)
−0.0791059 + 0.996866i \(0.525207\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −11.6428 −0.379545 −0.189773 0.981828i \(-0.560775\pi\)
−0.189773 + 0.981828i \(0.560775\pi\)
\(942\) 0 0
\(943\) −41.8306 −1.36219
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 34.6959 1.12747 0.563733 0.825957i \(-0.309365\pi\)
0.563733 + 0.825957i \(0.309365\pi\)
\(948\) 0 0
\(949\) 3.20011 0.103880
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 25.9025 0.839064 0.419532 0.907741i \(-0.362194\pi\)
0.419532 + 0.907741i \(0.362194\pi\)
\(954\) 0 0
\(955\) 7.83784 0.253627
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −4.79261 −0.154761
\(960\) 0 0
\(961\) −28.7183 −0.926398
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 23.8567 0.767974
\(966\) 0 0
\(967\) 26.9701 0.867301 0.433651 0.901081i \(-0.357225\pi\)
0.433651 + 0.901081i \(0.357225\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −51.6894 −1.65879 −0.829396 0.558660i \(-0.811316\pi\)
−0.829396 + 0.558660i \(0.811316\pi\)
\(972\) 0 0
\(973\) 1.13878 0.0365076
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.09751 0.0351124 0.0175562 0.999846i \(-0.494411\pi\)
0.0175562 + 0.999846i \(0.494411\pi\)
\(978\) 0 0
\(979\) −1.59208 −0.0508832
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 57.3140 1.82803 0.914016 0.405678i \(-0.132965\pi\)
0.914016 + 0.405678i \(0.132965\pi\)
\(984\) 0 0
\(985\) −20.3818 −0.649418
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −24.8764 −0.791022
\(990\) 0 0
\(991\) −36.8850 −1.17169 −0.585846 0.810423i \(-0.699237\pi\)
−0.585846 + 0.810423i \(0.699237\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 4.81818 0.152746
\(996\) 0 0
\(997\) −40.8072 −1.29238 −0.646188 0.763178i \(-0.723638\pi\)
−0.646188 + 0.763178i \(0.723638\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8208.2.a.bj.1.3 3
3.2 odd 2 8208.2.a.bk.1.1 3
4.3 odd 2 4104.2.a.f.1.3 3
12.11 even 2 4104.2.a.g.1.1 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4104.2.a.f.1.3 3 4.3 odd 2
4104.2.a.g.1.1 yes 3 12.11 even 2
8208.2.a.bj.1.3 3 1.1 even 1 trivial
8208.2.a.bk.1.1 3 3.2 odd 2