Properties

Label 2-8208-1.1-c1-0-12
Degree $2$
Conductor $8208$
Sign $1$
Analytic cond. $65.5412$
Root an. cond. $8.09575$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.83·5-s − 1.39·7-s − 5.50·11-s + 3.03·13-s + 3.51·17-s + 19-s − 7.65·23-s − 1.63·25-s − 5.01·29-s + 1.12·31-s + 2.55·35-s + 2.12·37-s + 1.11·41-s + 6.57·43-s − 8.55·47-s − 5.06·49-s + 4.63·53-s + 10.0·55-s + 4.38·59-s − 12.9·61-s − 5.56·65-s − 10.9·67-s − 6.63·71-s + 5.02·73-s + 7.65·77-s + 12.8·79-s − 4.40·83-s + ⋯
L(s)  = 1  − 0.820·5-s − 0.525·7-s − 1.65·11-s + 0.841·13-s + 0.852·17-s + 0.229·19-s − 1.59·23-s − 0.326·25-s − 0.931·29-s + 0.202·31-s + 0.431·35-s + 0.349·37-s + 0.173·41-s + 1.00·43-s − 1.24·47-s − 0.723·49-s + 0.636·53-s + 1.36·55-s + 0.570·59-s − 1.65·61-s − 0.690·65-s − 1.33·67-s − 0.787·71-s + 0.588·73-s + 0.871·77-s + 1.45·79-s − 0.483·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8208\)    =    \(2^{4} \cdot 3^{3} \cdot 19\)
Sign: $1$
Analytic conductor: \(65.5412\)
Root analytic conductor: \(8.09575\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8208,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8099203285\)
\(L(\frac12)\) \(\approx\) \(0.8099203285\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 - T \)
good5 \( 1 + 1.83T + 5T^{2} \)
7 \( 1 + 1.39T + 7T^{2} \)
11 \( 1 + 5.50T + 11T^{2} \)
13 \( 1 - 3.03T + 13T^{2} \)
17 \( 1 - 3.51T + 17T^{2} \)
23 \( 1 + 7.65T + 23T^{2} \)
29 \( 1 + 5.01T + 29T^{2} \)
31 \( 1 - 1.12T + 31T^{2} \)
37 \( 1 - 2.12T + 37T^{2} \)
41 \( 1 - 1.11T + 41T^{2} \)
43 \( 1 - 6.57T + 43T^{2} \)
47 \( 1 + 8.55T + 47T^{2} \)
53 \( 1 - 4.63T + 53T^{2} \)
59 \( 1 - 4.38T + 59T^{2} \)
61 \( 1 + 12.9T + 61T^{2} \)
67 \( 1 + 10.9T + 67T^{2} \)
71 \( 1 + 6.63T + 71T^{2} \)
73 \( 1 - 5.02T + 73T^{2} \)
79 \( 1 - 12.8T + 79T^{2} \)
83 \( 1 + 4.40T + 83T^{2} \)
89 \( 1 - 1.28T + 89T^{2} \)
97 \( 1 - 7.94T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.74213979829263800434141597611, −7.47525327521491655237279976663, −6.26253966121988600426162035426, −5.83477148832377417345459694404, −5.05346851858223730578132282989, −4.14354478220545458271324089398, −3.50425470198925400160253687944, −2.82836830458771698439861381843, −1.79100538487346869795093459953, −0.42773913653043163237175045575, 0.42773913653043163237175045575, 1.79100538487346869795093459953, 2.82836830458771698439861381843, 3.50425470198925400160253687944, 4.14354478220545458271324089398, 5.05346851858223730578132282989, 5.83477148832377417345459694404, 6.26253966121988600426162035426, 7.47525327521491655237279976663, 7.74213979829263800434141597611

Graph of the $Z$-function along the critical line