Properties

Label 8208.2.a.cc.1.1
Level $8208$
Weight $2$
Character 8208.1
Self dual yes
Analytic conductor $65.541$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8208,2,Mod(1,8208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8208.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8208 = 2^{4} \cdot 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8208.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,0,0,3,0,-1,0,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(65.5412099791\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.4873296.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 10x^{3} + 8x^{2} + 15x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 4104)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.757877\) of defining polynomial
Character \(\chi\) \(=\) 8208.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.83464 q^{5} -1.39043 q^{7} -5.50239 q^{11} +3.03519 q^{13} +3.51575 q^{17} +1.00000 q^{19} -7.65070 q^{23} -1.63409 q^{25} -5.01814 q^{29} +1.12532 q^{31} +2.55094 q^{35} +2.12532 q^{37} +1.11312 q^{41} +6.57915 q^{43} -8.55248 q^{47} -5.06670 q^{49} +4.63256 q^{53} +10.0949 q^{55} +4.38559 q^{59} -12.9110 q^{61} -5.56848 q^{65} -10.9110 q^{67} -6.63409 q^{71} +5.02452 q^{73} +7.65070 q^{77} +12.8895 q^{79} -4.40263 q^{83} -6.45015 q^{85} +1.28216 q^{89} -4.22023 q^{91} -1.83464 q^{95} +7.94138 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 3 q^{5} - q^{7} - 2 q^{11} + 3 q^{13} + 8 q^{17} + 5 q^{19} - 2 q^{23} + 4 q^{25} + 10 q^{29} + 2 q^{31} - 9 q^{35} + 7 q^{37} + 7 q^{41} - 10 q^{47} + 6 q^{49} + 22 q^{53} + 8 q^{55} - 12 q^{59}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.83464 −0.820476 −0.410238 0.911978i \(-0.634554\pi\)
−0.410238 + 0.911978i \(0.634554\pi\)
\(6\) 0 0
\(7\) −1.39043 −0.525534 −0.262767 0.964859i \(-0.584635\pi\)
−0.262767 + 0.964859i \(0.584635\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −5.50239 −1.65903 −0.829516 0.558483i \(-0.811384\pi\)
−0.829516 + 0.558483i \(0.811384\pi\)
\(12\) 0 0
\(13\) 3.03519 0.841810 0.420905 0.907105i \(-0.361713\pi\)
0.420905 + 0.907105i \(0.361713\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.51575 0.852696 0.426348 0.904559i \(-0.359800\pi\)
0.426348 + 0.904559i \(0.359800\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −7.65070 −1.59528 −0.797640 0.603134i \(-0.793919\pi\)
−0.797640 + 0.603134i \(0.793919\pi\)
\(24\) 0 0
\(25\) −1.63409 −0.326818
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −5.01814 −0.931845 −0.465923 0.884825i \(-0.654278\pi\)
−0.465923 + 0.884825i \(0.654278\pi\)
\(30\) 0 0
\(31\) 1.12532 0.202114 0.101057 0.994881i \(-0.467778\pi\)
0.101057 + 0.994881i \(0.467778\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.55094 0.431188
\(36\) 0 0
\(37\) 2.12532 0.349401 0.174700 0.984622i \(-0.444104\pi\)
0.174700 + 0.984622i \(0.444104\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.11312 0.173840 0.0869200 0.996215i \(-0.472298\pi\)
0.0869200 + 0.996215i \(0.472298\pi\)
\(42\) 0 0
\(43\) 6.57915 1.00331 0.501656 0.865067i \(-0.332724\pi\)
0.501656 + 0.865067i \(0.332724\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −8.55248 −1.24751 −0.623754 0.781621i \(-0.714393\pi\)
−0.623754 + 0.781621i \(0.714393\pi\)
\(48\) 0 0
\(49\) −5.06670 −0.723814
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.63256 0.636330 0.318165 0.948035i \(-0.396933\pi\)
0.318165 + 0.948035i \(0.396933\pi\)
\(54\) 0 0
\(55\) 10.0949 1.36120
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.38559 0.570955 0.285477 0.958385i \(-0.407848\pi\)
0.285477 + 0.958385i \(0.407848\pi\)
\(60\) 0 0
\(61\) −12.9110 −1.65308 −0.826539 0.562879i \(-0.809694\pi\)
−0.826539 + 0.562879i \(0.809694\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −5.56848 −0.690686
\(66\) 0 0
\(67\) −10.9110 −1.33299 −0.666493 0.745511i \(-0.732205\pi\)
−0.666493 + 0.745511i \(0.732205\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −6.63409 −0.787322 −0.393661 0.919256i \(-0.628792\pi\)
−0.393661 + 0.919256i \(0.628792\pi\)
\(72\) 0 0
\(73\) 5.02452 0.588076 0.294038 0.955794i \(-0.405001\pi\)
0.294038 + 0.955794i \(0.405001\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 7.65070 0.871878
\(78\) 0 0
\(79\) 12.8895 1.45018 0.725092 0.688653i \(-0.241797\pi\)
0.725092 + 0.688653i \(0.241797\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −4.40263 −0.483252 −0.241626 0.970369i \(-0.577681\pi\)
−0.241626 + 0.970369i \(0.577681\pi\)
\(84\) 0 0
\(85\) −6.45015 −0.699617
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.28216 0.135909 0.0679544 0.997688i \(-0.478353\pi\)
0.0679544 + 0.997688i \(0.478353\pi\)
\(90\) 0 0
\(91\) −4.22023 −0.442400
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.83464 −0.188230
\(96\) 0 0
\(97\) 7.94138 0.806325 0.403162 0.915128i \(-0.367911\pi\)
0.403162 + 0.915128i \(0.367911\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0.803133 0.0799147 0.0399574 0.999201i \(-0.487278\pi\)
0.0399574 + 0.999201i \(0.487278\pi\)
\(102\) 0 0
\(103\) 1.90288 0.187497 0.0937484 0.995596i \(-0.470115\pi\)
0.0937484 + 0.995596i \(0.470115\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.58509 0.636605 0.318302 0.947989i \(-0.396887\pi\)
0.318302 + 0.947989i \(0.396887\pi\)
\(108\) 0 0
\(109\) 7.54396 0.722580 0.361290 0.932453i \(-0.382336\pi\)
0.361290 + 0.932453i \(0.382336\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2.86829 −0.269826 −0.134913 0.990857i \(-0.543076\pi\)
−0.134913 + 0.990857i \(0.543076\pi\)
\(114\) 0 0
\(115\) 14.0363 1.30889
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −4.88842 −0.448121
\(120\) 0 0
\(121\) 19.2763 1.75239
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.1712 1.08862
\(126\) 0 0
\(127\) −15.8591 −1.40727 −0.703633 0.710563i \(-0.748440\pi\)
−0.703633 + 0.710563i \(0.748440\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 6.76903 0.591413 0.295707 0.955279i \(-0.404445\pi\)
0.295707 + 0.955279i \(0.404445\pi\)
\(132\) 0 0
\(133\) −1.39043 −0.120566
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −3.18504 −0.272116 −0.136058 0.990701i \(-0.543443\pi\)
−0.136058 + 0.990701i \(0.543443\pi\)
\(138\) 0 0
\(139\) −9.93917 −0.843029 −0.421515 0.906822i \(-0.638501\pi\)
−0.421515 + 0.906822i \(0.638501\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −16.7008 −1.39659
\(144\) 0 0
\(145\) 9.20649 0.764557
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.52251 0.124729 0.0623644 0.998053i \(-0.480136\pi\)
0.0623644 + 0.998053i \(0.480136\pi\)
\(150\) 0 0
\(151\) −8.66560 −0.705197 −0.352598 0.935775i \(-0.614702\pi\)
−0.352598 + 0.935775i \(0.614702\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2.06456 −0.165830
\(156\) 0 0
\(157\) 3.45911 0.276067 0.138034 0.990428i \(-0.455922\pi\)
0.138034 + 0.990428i \(0.455922\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 10.6378 0.838374
\(162\) 0 0
\(163\) 17.5031 1.37095 0.685475 0.728097i \(-0.259595\pi\)
0.685475 + 0.728097i \(0.259595\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −18.8208 −1.45640 −0.728200 0.685365i \(-0.759643\pi\)
−0.728200 + 0.685365i \(0.759643\pi\)
\(168\) 0 0
\(169\) −3.78762 −0.291355
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 14.4693 1.10008 0.550042 0.835137i \(-0.314612\pi\)
0.550042 + 0.835137i \(0.314612\pi\)
\(174\) 0 0
\(175\) 2.27209 0.171754
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −20.4560 −1.52895 −0.764475 0.644653i \(-0.777002\pi\)
−0.764475 + 0.644653i \(0.777002\pi\)
\(180\) 0 0
\(181\) 8.58283 0.637957 0.318978 0.947762i \(-0.396660\pi\)
0.318978 + 0.947762i \(0.396660\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3.89920 −0.286675
\(186\) 0 0
\(187\) −19.3450 −1.41465
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 24.7910 1.79381 0.896907 0.442219i \(-0.145808\pi\)
0.896907 + 0.442219i \(0.145808\pi\)
\(192\) 0 0
\(193\) −8.43738 −0.607336 −0.303668 0.952778i \(-0.598211\pi\)
−0.303668 + 0.952778i \(0.598211\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 24.5205 1.74702 0.873508 0.486810i \(-0.161840\pi\)
0.873508 + 0.486810i \(0.161840\pi\)
\(198\) 0 0
\(199\) 13.7292 0.973239 0.486619 0.873614i \(-0.338230\pi\)
0.486619 + 0.873614i \(0.338230\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 6.97738 0.489716
\(204\) 0 0
\(205\) −2.04217 −0.142632
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −5.50239 −0.380608
\(210\) 0 0
\(211\) 23.6986 1.63148 0.815739 0.578421i \(-0.196331\pi\)
0.815739 + 0.578421i \(0.196331\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −12.0704 −0.823193
\(216\) 0 0
\(217\) −1.56468 −0.106218
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 10.6710 0.717808
\(222\) 0 0
\(223\) −22.4756 −1.50508 −0.752540 0.658546i \(-0.771172\pi\)
−0.752540 + 0.658546i \(0.771172\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −7.08485 −0.470238 −0.235119 0.971967i \(-0.575548\pi\)
−0.235119 + 0.971967i \(0.575548\pi\)
\(228\) 0 0
\(229\) 13.4411 0.888210 0.444105 0.895975i \(-0.353522\pi\)
0.444105 + 0.895975i \(0.353522\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.56755 −0.102693 −0.0513467 0.998681i \(-0.516351\pi\)
−0.0513467 + 0.998681i \(0.516351\pi\)
\(234\) 0 0
\(235\) 15.6907 1.02355
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 16.4940 1.06691 0.533453 0.845830i \(-0.320894\pi\)
0.533453 + 0.845830i \(0.320894\pi\)
\(240\) 0 0
\(241\) 30.5887 1.97039 0.985196 0.171434i \(-0.0548400\pi\)
0.985196 + 0.171434i \(0.0548400\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 9.29557 0.593872
\(246\) 0 0
\(247\) 3.03519 0.193125
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2.94697 0.186011 0.0930055 0.995666i \(-0.470353\pi\)
0.0930055 + 0.995666i \(0.470353\pi\)
\(252\) 0 0
\(253\) 42.0971 2.64662
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −13.5371 −0.844423 −0.422212 0.906497i \(-0.638746\pi\)
−0.422212 + 0.906497i \(0.638746\pi\)
\(258\) 0 0
\(259\) −2.95512 −0.183622
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1.13539 0.0700110 0.0350055 0.999387i \(-0.488855\pi\)
0.0350055 + 0.999387i \(0.488855\pi\)
\(264\) 0 0
\(265\) −8.49908 −0.522094
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 9.42679 0.574761 0.287381 0.957816i \(-0.407216\pi\)
0.287381 + 0.957816i \(0.407216\pi\)
\(270\) 0 0
\(271\) −0.275168 −0.0167152 −0.00835762 0.999965i \(-0.502660\pi\)
−0.00835762 + 0.999965i \(0.502660\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 8.99141 0.542202
\(276\) 0 0
\(277\) 12.9355 0.777218 0.388609 0.921403i \(-0.372956\pi\)
0.388609 + 0.921403i \(0.372956\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 15.1384 0.903079 0.451539 0.892251i \(-0.350875\pi\)
0.451539 + 0.892251i \(0.350875\pi\)
\(282\) 0 0
\(283\) 25.7129 1.52847 0.764237 0.644935i \(-0.223116\pi\)
0.764237 + 0.644935i \(0.223116\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1.54772 −0.0913588
\(288\) 0 0
\(289\) −4.63947 −0.272910
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −7.12495 −0.416244 −0.208122 0.978103i \(-0.566735\pi\)
−0.208122 + 0.978103i \(0.566735\pi\)
\(294\) 0 0
\(295\) −8.04598 −0.468455
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −23.2213 −1.34292
\(300\) 0 0
\(301\) −9.14786 −0.527274
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 23.6870 1.35631
\(306\) 0 0
\(307\) −0.252343 −0.0144020 −0.00720099 0.999974i \(-0.502292\pi\)
−0.00720099 + 0.999974i \(0.502292\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −12.2492 −0.694586 −0.347293 0.937757i \(-0.612899\pi\)
−0.347293 + 0.937757i \(0.612899\pi\)
\(312\) 0 0
\(313\) −7.83348 −0.442774 −0.221387 0.975186i \(-0.571058\pi\)
−0.221387 + 0.975186i \(0.571058\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 14.9788 0.841294 0.420647 0.907224i \(-0.361803\pi\)
0.420647 + 0.907224i \(0.361803\pi\)
\(318\) 0 0
\(319\) 27.6117 1.54596
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 3.51575 0.195622
\(324\) 0 0
\(325\) −4.95978 −0.275119
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 11.8916 0.655608
\(330\) 0 0
\(331\) 30.3056 1.66574 0.832872 0.553466i \(-0.186695\pi\)
0.832872 + 0.553466i \(0.186695\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 20.0177 1.09368
\(336\) 0 0
\(337\) 31.4934 1.71556 0.857778 0.514021i \(-0.171845\pi\)
0.857778 + 0.514021i \(0.171845\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −6.19196 −0.335313
\(342\) 0 0
\(343\) 16.7779 0.905923
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 27.0011 1.44950 0.724748 0.689014i \(-0.241956\pi\)
0.724748 + 0.689014i \(0.241956\pi\)
\(348\) 0 0
\(349\) 7.30337 0.390941 0.195470 0.980710i \(-0.437377\pi\)
0.195470 + 0.980710i \(0.437377\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −13.8560 −0.737481 −0.368741 0.929532i \(-0.620211\pi\)
−0.368741 + 0.929532i \(0.620211\pi\)
\(354\) 0 0
\(355\) 12.1712 0.645979
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −20.4880 −1.08131 −0.540657 0.841243i \(-0.681824\pi\)
−0.540657 + 0.841243i \(0.681824\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −9.21820 −0.482503
\(366\) 0 0
\(367\) 18.3025 0.955382 0.477691 0.878528i \(-0.341474\pi\)
0.477691 + 0.878528i \(0.341474\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −6.44125 −0.334413
\(372\) 0 0
\(373\) −31.2895 −1.62011 −0.810054 0.586355i \(-0.800562\pi\)
−0.810054 + 0.586355i \(0.800562\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −15.2310 −0.784437
\(378\) 0 0
\(379\) 16.2628 0.835363 0.417681 0.908594i \(-0.362843\pi\)
0.417681 + 0.908594i \(0.362843\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 4.49007 0.229432 0.114716 0.993398i \(-0.463404\pi\)
0.114716 + 0.993398i \(0.463404\pi\)
\(384\) 0 0
\(385\) −14.0363 −0.715355
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −18.0935 −0.917376 −0.458688 0.888597i \(-0.651680\pi\)
−0.458688 + 0.888597i \(0.651680\pi\)
\(390\) 0 0
\(391\) −26.8980 −1.36029
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −23.6476 −1.18984
\(396\) 0 0
\(397\) −27.1125 −1.36074 −0.680369 0.732869i \(-0.738181\pi\)
−0.680369 + 0.732869i \(0.738181\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 34.5517 1.72543 0.862716 0.505689i \(-0.168762\pi\)
0.862716 + 0.505689i \(0.168762\pi\)
\(402\) 0 0
\(403\) 3.41557 0.170141
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −11.6943 −0.579667
\(408\) 0 0
\(409\) 35.6446 1.76251 0.881256 0.472639i \(-0.156698\pi\)
0.881256 + 0.472639i \(0.156698\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −6.09786 −0.300056
\(414\) 0 0
\(415\) 8.07726 0.396497
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 18.7892 0.917910 0.458955 0.888459i \(-0.348224\pi\)
0.458955 + 0.888459i \(0.348224\pi\)
\(420\) 0 0
\(421\) −14.5066 −0.707006 −0.353503 0.935433i \(-0.615010\pi\)
−0.353503 + 0.935433i \(0.615010\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −5.74507 −0.278677
\(426\) 0 0
\(427\) 17.9518 0.868749
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −11.0123 −0.530444 −0.265222 0.964187i \(-0.585445\pi\)
−0.265222 + 0.964187i \(0.585445\pi\)
\(432\) 0 0
\(433\) 15.4541 0.742675 0.371337 0.928498i \(-0.378899\pi\)
0.371337 + 0.928498i \(0.378899\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −7.65070 −0.365982
\(438\) 0 0
\(439\) −27.1350 −1.29508 −0.647541 0.762030i \(-0.724203\pi\)
−0.647541 + 0.762030i \(0.724203\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5.17073 −0.245669 −0.122834 0.992427i \(-0.539198\pi\)
−0.122834 + 0.992427i \(0.539198\pi\)
\(444\) 0 0
\(445\) −2.35230 −0.111510
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 23.8147 1.12388 0.561941 0.827177i \(-0.310055\pi\)
0.561941 + 0.827177i \(0.310055\pi\)
\(450\) 0 0
\(451\) −6.12481 −0.288406
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 7.74260 0.362979
\(456\) 0 0
\(457\) −34.6929 −1.62287 −0.811433 0.584445i \(-0.801312\pi\)
−0.811433 + 0.584445i \(0.801312\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 11.7732 0.548330 0.274165 0.961683i \(-0.411598\pi\)
0.274165 + 0.961683i \(0.411598\pi\)
\(462\) 0 0
\(463\) 14.5634 0.676820 0.338410 0.940999i \(-0.390111\pi\)
0.338410 + 0.940999i \(0.390111\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −42.0318 −1.94500 −0.972500 0.232903i \(-0.925178\pi\)
−0.972500 + 0.232903i \(0.925178\pi\)
\(468\) 0 0
\(469\) 15.1709 0.700529
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −36.2010 −1.66453
\(474\) 0 0
\(475\) −1.63409 −0.0749773
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 2.40572 0.109920 0.0549600 0.998489i \(-0.482497\pi\)
0.0549600 + 0.998489i \(0.482497\pi\)
\(480\) 0 0
\(481\) 6.45076 0.294129
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −14.5696 −0.661570
\(486\) 0 0
\(487\) −0.934621 −0.0423517 −0.0211759 0.999776i \(-0.506741\pi\)
−0.0211759 + 0.999776i \(0.506741\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 30.7216 1.38644 0.693222 0.720724i \(-0.256190\pi\)
0.693222 + 0.720724i \(0.256190\pi\)
\(492\) 0 0
\(493\) −17.6425 −0.794580
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 9.22426 0.413764
\(498\) 0 0
\(499\) 1.88364 0.0843235 0.0421618 0.999111i \(-0.486576\pi\)
0.0421618 + 0.999111i \(0.486576\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −19.9739 −0.890591 −0.445295 0.895384i \(-0.646901\pi\)
−0.445295 + 0.895384i \(0.646901\pi\)
\(504\) 0 0
\(505\) −1.47346 −0.0655682
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −32.5836 −1.44424 −0.722121 0.691766i \(-0.756833\pi\)
−0.722121 + 0.691766i \(0.756833\pi\)
\(510\) 0 0
\(511\) −6.98626 −0.309054
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −3.49111 −0.153837
\(516\) 0 0
\(517\) 47.0591 2.06965
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −34.4277 −1.50831 −0.754153 0.656699i \(-0.771952\pi\)
−0.754153 + 0.656699i \(0.771952\pi\)
\(522\) 0 0
\(523\) 26.2976 1.14991 0.574957 0.818184i \(-0.305019\pi\)
0.574957 + 0.818184i \(0.305019\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.95635 0.172341
\(528\) 0 0
\(529\) 35.5331 1.54492
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 3.37853 0.146340
\(534\) 0 0
\(535\) −12.0813 −0.522319
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 27.8789 1.20083
\(540\) 0 0
\(541\) 16.0566 0.690329 0.345164 0.938542i \(-0.387823\pi\)
0.345164 + 0.938542i \(0.387823\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −13.8405 −0.592860
\(546\) 0 0
\(547\) 6.77411 0.289640 0.144820 0.989458i \(-0.453740\pi\)
0.144820 + 0.989458i \(0.453740\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −5.01814 −0.213780
\(552\) 0 0
\(553\) −17.9220 −0.762120
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −1.95100 −0.0826664 −0.0413332 0.999145i \(-0.513161\pi\)
−0.0413332 + 0.999145i \(0.513161\pi\)
\(558\) 0 0
\(559\) 19.9690 0.844598
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 27.5408 1.16071 0.580353 0.814365i \(-0.302914\pi\)
0.580353 + 0.814365i \(0.302914\pi\)
\(564\) 0 0
\(565\) 5.26229 0.221386
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1.59564 0.0668925 0.0334463 0.999441i \(-0.489352\pi\)
0.0334463 + 0.999441i \(0.489352\pi\)
\(570\) 0 0
\(571\) −40.8972 −1.71149 −0.855747 0.517394i \(-0.826902\pi\)
−0.855747 + 0.517394i \(0.826902\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 12.5019 0.521367
\(576\) 0 0
\(577\) 10.3939 0.432703 0.216352 0.976316i \(-0.430584\pi\)
0.216352 + 0.976316i \(0.430584\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 6.12157 0.253965
\(582\) 0 0
\(583\) −25.4901 −1.05569
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 3.23833 0.133660 0.0668301 0.997764i \(-0.478711\pi\)
0.0668301 + 0.997764i \(0.478711\pi\)
\(588\) 0 0
\(589\) 1.12532 0.0463681
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 26.5977 1.09224 0.546118 0.837708i \(-0.316105\pi\)
0.546118 + 0.837708i \(0.316105\pi\)
\(594\) 0 0
\(595\) 8.96849 0.367672
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −37.6241 −1.53728 −0.768639 0.639682i \(-0.779066\pi\)
−0.768639 + 0.639682i \(0.779066\pi\)
\(600\) 0 0
\(601\) −15.4200 −0.628993 −0.314497 0.949259i \(-0.601836\pi\)
−0.314497 + 0.949259i \(0.601836\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −35.3650 −1.43779
\(606\) 0 0
\(607\) −28.8146 −1.16955 −0.584774 0.811196i \(-0.698817\pi\)
−0.584774 + 0.811196i \(0.698817\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −25.9584 −1.05016
\(612\) 0 0
\(613\) 23.0323 0.930264 0.465132 0.885241i \(-0.346007\pi\)
0.465132 + 0.885241i \(0.346007\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 43.4118 1.74769 0.873846 0.486202i \(-0.161618\pi\)
0.873846 + 0.486202i \(0.161618\pi\)
\(618\) 0 0
\(619\) −19.8058 −0.796060 −0.398030 0.917372i \(-0.630306\pi\)
−0.398030 + 0.917372i \(0.630306\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −1.78276 −0.0714246
\(624\) 0 0
\(625\) −14.1593 −0.566371
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 7.47211 0.297932
\(630\) 0 0
\(631\) −38.1149 −1.51733 −0.758664 0.651482i \(-0.774148\pi\)
−0.758664 + 0.651482i \(0.774148\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 29.0957 1.15463
\(636\) 0 0
\(637\) −15.3784 −0.609314
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −16.8744 −0.666500 −0.333250 0.942838i \(-0.608145\pi\)
−0.333250 + 0.942838i \(0.608145\pi\)
\(642\) 0 0
\(643\) 34.3788 1.35577 0.677883 0.735170i \(-0.262898\pi\)
0.677883 + 0.735170i \(0.262898\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 29.8998 1.17548 0.587742 0.809048i \(-0.300017\pi\)
0.587742 + 0.809048i \(0.300017\pi\)
\(648\) 0 0
\(649\) −24.1312 −0.947232
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −24.8855 −0.973844 −0.486922 0.873445i \(-0.661880\pi\)
−0.486922 + 0.873445i \(0.661880\pi\)
\(654\) 0 0
\(655\) −12.4187 −0.485241
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 42.7784 1.66641 0.833205 0.552964i \(-0.186503\pi\)
0.833205 + 0.552964i \(0.186503\pi\)
\(660\) 0 0
\(661\) 2.08254 0.0810014 0.0405007 0.999180i \(-0.487105\pi\)
0.0405007 + 0.999180i \(0.487105\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.55094 0.0989214
\(666\) 0 0
\(667\) 38.3923 1.48655
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 71.0411 2.74251
\(672\) 0 0
\(673\) 4.64130 0.178909 0.0894546 0.995991i \(-0.471488\pi\)
0.0894546 + 0.995991i \(0.471488\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −8.90229 −0.342143 −0.171071 0.985259i \(-0.554723\pi\)
−0.171071 + 0.985259i \(0.554723\pi\)
\(678\) 0 0
\(679\) −11.0419 −0.423751
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 7.63882 0.292291 0.146146 0.989263i \(-0.453313\pi\)
0.146146 + 0.989263i \(0.453313\pi\)
\(684\) 0 0
\(685\) 5.84340 0.223265
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 14.0607 0.535669
\(690\) 0 0
\(691\) −12.5126 −0.476001 −0.238001 0.971265i \(-0.576492\pi\)
−0.238001 + 0.971265i \(0.576492\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 18.2348 0.691685
\(696\) 0 0
\(697\) 3.91345 0.148233
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −31.5966 −1.19339 −0.596694 0.802469i \(-0.703519\pi\)
−0.596694 + 0.802469i \(0.703519\pi\)
\(702\) 0 0
\(703\) 2.12532 0.0801580
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.11670 −0.0419979
\(708\) 0 0
\(709\) −45.1176 −1.69443 −0.847213 0.531253i \(-0.821721\pi\)
−0.847213 + 0.531253i \(0.821721\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −8.60949 −0.322428
\(714\) 0 0
\(715\) 30.6400 1.14587
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1.42506 −0.0531457 −0.0265728 0.999647i \(-0.508459\pi\)
−0.0265728 + 0.999647i \(0.508459\pi\)
\(720\) 0 0
\(721\) −2.64583 −0.0985360
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 8.20010 0.304544
\(726\) 0 0
\(727\) 8.29368 0.307596 0.153798 0.988102i \(-0.450850\pi\)
0.153798 + 0.988102i \(0.450850\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 23.1307 0.855519
\(732\) 0 0
\(733\) 37.9477 1.40163 0.700816 0.713343i \(-0.252820\pi\)
0.700816 + 0.713343i \(0.252820\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 60.0363 2.21147
\(738\) 0 0
\(739\) 51.7664 1.90426 0.952128 0.305699i \(-0.0988900\pi\)
0.952128 + 0.305699i \(0.0988900\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 29.1383 1.06898 0.534491 0.845174i \(-0.320503\pi\)
0.534491 + 0.845174i \(0.320503\pi\)
\(744\) 0 0
\(745\) −2.79326 −0.102337
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −9.15612 −0.334557
\(750\) 0 0
\(751\) −15.0775 −0.550185 −0.275093 0.961418i \(-0.588709\pi\)
−0.275093 + 0.961418i \(0.588709\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 15.8983 0.578597
\(756\) 0 0
\(757\) 27.9338 1.01527 0.507635 0.861572i \(-0.330520\pi\)
0.507635 + 0.861572i \(0.330520\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −0.395369 −0.0143321 −0.00716606 0.999974i \(-0.502281\pi\)
−0.00716606 + 0.999974i \(0.502281\pi\)
\(762\) 0 0
\(763\) −10.4894 −0.379741
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 13.3111 0.480635
\(768\) 0 0
\(769\) 37.6078 1.35617 0.678087 0.734982i \(-0.262809\pi\)
0.678087 + 0.734982i \(0.262809\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −0.0830937 −0.00298867 −0.00149434 0.999999i \(-0.500476\pi\)
−0.00149434 + 0.999999i \(0.500476\pi\)
\(774\) 0 0
\(775\) −1.83888 −0.0660545
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.11312 0.0398816
\(780\) 0 0
\(781\) 36.5033 1.30619
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −6.34623 −0.226507
\(786\) 0 0
\(787\) 8.06032 0.287319 0.143660 0.989627i \(-0.454113\pi\)
0.143660 + 0.989627i \(0.454113\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 3.98817 0.141803
\(792\) 0 0
\(793\) −39.1872 −1.39158
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −38.2685 −1.35554 −0.677770 0.735274i \(-0.737053\pi\)
−0.677770 + 0.735274i \(0.737053\pi\)
\(798\) 0 0
\(799\) −30.0684 −1.06374
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −27.6469 −0.975637
\(804\) 0 0
\(805\) −19.5165 −0.687866
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 4.55617 0.160186 0.0800932 0.996787i \(-0.474478\pi\)
0.0800932 + 0.996787i \(0.474478\pi\)
\(810\) 0 0
\(811\) 15.3819 0.540130 0.270065 0.962842i \(-0.412955\pi\)
0.270065 + 0.962842i \(0.412955\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −32.1119 −1.12483
\(816\) 0 0
\(817\) 6.57915 0.230175
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 33.6469 1.17428 0.587142 0.809484i \(-0.300253\pi\)
0.587142 + 0.809484i \(0.300253\pi\)
\(822\) 0 0
\(823\) 8.74381 0.304790 0.152395 0.988320i \(-0.451301\pi\)
0.152395 + 0.988320i \(0.451301\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −7.05746 −0.245412 −0.122706 0.992443i \(-0.539157\pi\)
−0.122706 + 0.992443i \(0.539157\pi\)
\(828\) 0 0
\(829\) −3.22500 −0.112009 −0.0560044 0.998431i \(-0.517836\pi\)
−0.0560044 + 0.998431i \(0.517836\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −17.8133 −0.617193
\(834\) 0 0
\(835\) 34.5295 1.19494
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 26.2090 0.904837 0.452418 0.891806i \(-0.350561\pi\)
0.452418 + 0.891806i \(0.350561\pi\)
\(840\) 0 0
\(841\) −3.81827 −0.131664
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 6.94892 0.239050
\(846\) 0 0
\(847\) −26.8023 −0.920939
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −16.2602 −0.557392
\(852\) 0 0
\(853\) 3.21506 0.110082 0.0550408 0.998484i \(-0.482471\pi\)
0.0550408 + 0.998484i \(0.482471\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −16.8135 −0.574337 −0.287168 0.957880i \(-0.592714\pi\)
−0.287168 + 0.957880i \(0.592714\pi\)
\(858\) 0 0
\(859\) −8.42341 −0.287403 −0.143702 0.989621i \(-0.545901\pi\)
−0.143702 + 0.989621i \(0.545901\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −33.2762 −1.13274 −0.566368 0.824152i \(-0.691652\pi\)
−0.566368 + 0.824152i \(0.691652\pi\)
\(864\) 0 0
\(865\) −26.5460 −0.902592
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −70.9231 −2.40590
\(870\) 0 0
\(871\) −33.1168 −1.12212
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −16.9232 −0.572109
\(876\) 0 0
\(877\) −28.4894 −0.962018 −0.481009 0.876716i \(-0.659730\pi\)
−0.481009 + 0.876716i \(0.659730\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 38.3765 1.29294 0.646469 0.762940i \(-0.276245\pi\)
0.646469 + 0.762940i \(0.276245\pi\)
\(882\) 0 0
\(883\) −28.5747 −0.961616 −0.480808 0.876826i \(-0.659657\pi\)
−0.480808 + 0.876826i \(0.659657\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −37.5713 −1.26152 −0.630761 0.775977i \(-0.717257\pi\)
−0.630761 + 0.775977i \(0.717257\pi\)
\(888\) 0 0
\(889\) 22.0510 0.739567
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −8.55248 −0.286198
\(894\) 0 0
\(895\) 37.5294 1.25447
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −5.64702 −0.188339
\(900\) 0 0
\(901\) 16.2869 0.542596
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −15.7464 −0.523429
\(906\) 0 0
\(907\) 1.33106 0.0441973 0.0220986 0.999756i \(-0.492965\pi\)
0.0220986 + 0.999756i \(0.492965\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 26.9449 0.892724 0.446362 0.894853i \(-0.352719\pi\)
0.446362 + 0.894853i \(0.352719\pi\)
\(912\) 0 0
\(913\) 24.2250 0.801730
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −9.41188 −0.310808
\(918\) 0 0
\(919\) 12.5931 0.415409 0.207704 0.978192i \(-0.433401\pi\)
0.207704 + 0.978192i \(0.433401\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −20.1357 −0.662776
\(924\) 0 0
\(925\) −3.47297 −0.114191
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −43.7114 −1.43412 −0.717062 0.697009i \(-0.754514\pi\)
−0.717062 + 0.697009i \(0.754514\pi\)
\(930\) 0 0
\(931\) −5.06670 −0.166054
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 35.4912 1.16069
\(936\) 0 0
\(937\) 12.3081 0.402090 0.201045 0.979582i \(-0.435566\pi\)
0.201045 + 0.979582i \(0.435566\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 18.5969 0.606241 0.303120 0.952952i \(-0.401972\pi\)
0.303120 + 0.952952i \(0.401972\pi\)
\(942\) 0 0
\(943\) −8.51613 −0.277324
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 42.1387 1.36932 0.684661 0.728861i \(-0.259950\pi\)
0.684661 + 0.728861i \(0.259950\pi\)
\(948\) 0 0
\(949\) 15.2504 0.495049
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −27.1155 −0.878356 −0.439178 0.898400i \(-0.644730\pi\)
−0.439178 + 0.898400i \(0.644730\pi\)
\(954\) 0 0
\(955\) −45.4826 −1.47178
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 4.42858 0.143006
\(960\) 0 0
\(961\) −29.7337 −0.959150
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 15.4796 0.498305
\(966\) 0 0
\(967\) 14.1823 0.456073 0.228036 0.973653i \(-0.426769\pi\)
0.228036 + 0.973653i \(0.426769\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −24.7572 −0.794496 −0.397248 0.917711i \(-0.630035\pi\)
−0.397248 + 0.917711i \(0.630035\pi\)
\(972\) 0 0
\(973\) 13.8197 0.443040
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −33.3066 −1.06557 −0.532786 0.846250i \(-0.678855\pi\)
−0.532786 + 0.846250i \(0.678855\pi\)
\(978\) 0 0
\(979\) −7.05494 −0.225477
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −41.0388 −1.30893 −0.654467 0.756091i \(-0.727107\pi\)
−0.654467 + 0.756091i \(0.727107\pi\)
\(984\) 0 0
\(985\) −44.9864 −1.43338
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −50.3351 −1.60056
\(990\) 0 0
\(991\) −9.76520 −0.310202 −0.155101 0.987899i \(-0.549570\pi\)
−0.155101 + 0.987899i \(0.549570\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −25.1882 −0.798520
\(996\) 0 0
\(997\) −31.6286 −1.00169 −0.500843 0.865538i \(-0.666977\pi\)
−0.500843 + 0.865538i \(0.666977\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8208.2.a.cc.1.1 5
3.2 odd 2 8208.2.a.cb.1.5 5
4.3 odd 2 4104.2.a.r.1.1 yes 5
12.11 even 2 4104.2.a.o.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4104.2.a.o.1.5 5 12.11 even 2
4104.2.a.r.1.1 yes 5 4.3 odd 2
8208.2.a.cb.1.5 5 3.2 odd 2
8208.2.a.cc.1.1 5 1.1 even 1 trivial