Properties

Label 2-8208-1.1-c1-0-117
Degree $2$
Conductor $8208$
Sign $-1$
Analytic cond. $65.5412$
Root an. cond. $8.09575$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.773·5-s − 1.91·7-s + 6.46·11-s + 0.0817·13-s − 3·17-s + 19-s − 0.773·23-s − 4.40·25-s − 3.77·29-s + 0.918·31-s − 1.48·35-s − 9.23·37-s − 2.93·41-s − 6.32·43-s + 4.54·47-s − 3.32·49-s − 3.30·53-s + 5·55-s − 3.40·59-s + 0.0817·61-s + 0.0631·65-s − 6.40·67-s + 4.79·71-s + 11.4·73-s − 12.4·77-s − 9.23·79-s + 3·83-s + ⋯
L(s)  = 1  + 0.345·5-s − 0.725·7-s + 1.94·11-s + 0.0226·13-s − 0.727·17-s + 0.229·19-s − 0.161·23-s − 0.880·25-s − 0.700·29-s + 0.164·31-s − 0.250·35-s − 1.51·37-s − 0.458·41-s − 0.963·43-s + 0.663·47-s − 0.474·49-s − 0.454·53-s + 0.674·55-s − 0.442·59-s + 0.0104·61-s + 0.00783·65-s − 0.782·67-s + 0.568·71-s + 1.34·73-s − 1.41·77-s − 1.03·79-s + 0.329·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8208\)    =    \(2^{4} \cdot 3^{3} \cdot 19\)
Sign: $-1$
Analytic conductor: \(65.5412\)
Root analytic conductor: \(8.09575\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8208,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 - T \)
good5 \( 1 - 0.773T + 5T^{2} \)
7 \( 1 + 1.91T + 7T^{2} \)
11 \( 1 - 6.46T + 11T^{2} \)
13 \( 1 - 0.0817T + 13T^{2} \)
17 \( 1 + 3T + 17T^{2} \)
23 \( 1 + 0.773T + 23T^{2} \)
29 \( 1 + 3.77T + 29T^{2} \)
31 \( 1 - 0.918T + 31T^{2} \)
37 \( 1 + 9.23T + 37T^{2} \)
41 \( 1 + 2.93T + 41T^{2} \)
43 \( 1 + 6.32T + 43T^{2} \)
47 \( 1 - 4.54T + 47T^{2} \)
53 \( 1 + 3.30T + 53T^{2} \)
59 \( 1 + 3.40T + 59T^{2} \)
61 \( 1 - 0.0817T + 61T^{2} \)
67 \( 1 + 6.40T + 67T^{2} \)
71 \( 1 - 4.79T + 71T^{2} \)
73 \( 1 - 11.4T + 73T^{2} \)
79 \( 1 + 9.23T + 79T^{2} \)
83 \( 1 - 3T + 83T^{2} \)
89 \( 1 + 7.08T + 89T^{2} \)
97 \( 1 - 1.40T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.24231407776750425742959647844, −6.70592158084894562821049613698, −6.23272316259352024251324069134, −5.51598519685138981506848327872, −4.55293391017196284967651911357, −3.79043544061436742762258061340, −3.28477146389995705557207738303, −2.07453838364489735172406010877, −1.37964781875537455540209408672, 0, 1.37964781875537455540209408672, 2.07453838364489735172406010877, 3.28477146389995705557207738303, 3.79043544061436742762258061340, 4.55293391017196284967651911357, 5.51598519685138981506848327872, 6.23272316259352024251324069134, 6.70592158084894562821049613698, 7.24231407776750425742959647844

Graph of the $Z$-function along the critical line