Properties

Label 8208.2.a.be.1.3
Level $8208$
Weight $2$
Character 8208.1
Self dual yes
Analytic conductor $65.541$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8208,2,Mod(1,8208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8208.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8208 = 2^{4} \cdot 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8208.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,-5,0,-3,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(65.5412099791\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.993.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 6x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2052)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.77339\) of defining polynomial
Character \(\chi\) \(=\) 8208.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.773387 q^{5} -1.91829 q^{7} +6.46507 q^{11} +0.0817097 q^{13} -3.00000 q^{17} +1.00000 q^{19} -0.773387 q^{23} -4.40187 q^{25} -3.77339 q^{29} +0.918290 q^{31} -1.48358 q^{35} -9.23845 q^{37} -2.93681 q^{41} -6.32016 q^{43} +4.54677 q^{47} -3.32016 q^{49} -3.30832 q^{53} +5.00000 q^{55} -3.40187 q^{59} +0.0817097 q^{61} +0.0631932 q^{65} -6.40187 q^{67} +4.79190 q^{71} +11.4769 q^{73} -12.4019 q^{77} -9.23845 q^{79} +3.00000 q^{83} -2.32016 q^{85} -7.08171 q^{89} -0.156743 q^{91} +0.773387 q^{95} +1.40187 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 5 q^{5} - 3 q^{7} + 2 q^{11} + 3 q^{13} - 9 q^{17} + 3 q^{19} + 5 q^{23} + 6 q^{25} - 4 q^{29} + 12 q^{35} - 3 q^{37} - 7 q^{41} + 3 q^{43} - q^{47} + 12 q^{49} - 20 q^{53} + 15 q^{55} + 9 q^{59}+ \cdots - 15 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.773387 0.345869 0.172935 0.984933i \(-0.444675\pi\)
0.172935 + 0.984933i \(0.444675\pi\)
\(6\) 0 0
\(7\) −1.91829 −0.725046 −0.362523 0.931975i \(-0.618085\pi\)
−0.362523 + 0.931975i \(0.618085\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 6.46507 1.94929 0.974645 0.223756i \(-0.0718318\pi\)
0.974645 + 0.223756i \(0.0718318\pi\)
\(12\) 0 0
\(13\) 0.0817097 0.0226622 0.0113311 0.999936i \(-0.496393\pi\)
0.0113311 + 0.999936i \(0.496393\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.00000 −0.727607 −0.363803 0.931476i \(-0.618522\pi\)
−0.363803 + 0.931476i \(0.618522\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.773387 −0.161262 −0.0806312 0.996744i \(-0.525694\pi\)
−0.0806312 + 0.996744i \(0.525694\pi\)
\(24\) 0 0
\(25\) −4.40187 −0.880374
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.77339 −0.700700 −0.350350 0.936619i \(-0.613937\pi\)
−0.350350 + 0.936619i \(0.613937\pi\)
\(30\) 0 0
\(31\) 0.918290 0.164930 0.0824649 0.996594i \(-0.473721\pi\)
0.0824649 + 0.996594i \(0.473721\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.48358 −0.250771
\(36\) 0 0
\(37\) −9.23845 −1.51879 −0.759396 0.650629i \(-0.774506\pi\)
−0.759396 + 0.650629i \(0.774506\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.93681 −0.458652 −0.229326 0.973350i \(-0.573652\pi\)
−0.229326 + 0.973350i \(0.573652\pi\)
\(42\) 0 0
\(43\) −6.32016 −0.963816 −0.481908 0.876222i \(-0.660056\pi\)
−0.481908 + 0.876222i \(0.660056\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.54677 0.663215 0.331608 0.943417i \(-0.392409\pi\)
0.331608 + 0.943417i \(0.392409\pi\)
\(48\) 0 0
\(49\) −3.32016 −0.474309
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −3.30832 −0.454433 −0.227217 0.973844i \(-0.572963\pi\)
−0.227217 + 0.973844i \(0.572963\pi\)
\(54\) 0 0
\(55\) 5.00000 0.674200
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −3.40187 −0.442886 −0.221443 0.975173i \(-0.571077\pi\)
−0.221443 + 0.975173i \(0.571077\pi\)
\(60\) 0 0
\(61\) 0.0817097 0.0104619 0.00523093 0.999986i \(-0.498335\pi\)
0.00523093 + 0.999986i \(0.498335\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.0631932 0.00783816
\(66\) 0 0
\(67\) −6.40187 −0.782113 −0.391057 0.920367i \(-0.627890\pi\)
−0.391057 + 0.920367i \(0.627890\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.79190 0.568694 0.284347 0.958721i \(-0.408223\pi\)
0.284347 + 0.958721i \(0.408223\pi\)
\(72\) 0 0
\(73\) 11.4769 1.34327 0.671635 0.740882i \(-0.265592\pi\)
0.671635 + 0.740882i \(0.265592\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −12.4019 −1.41332
\(78\) 0 0
\(79\) −9.23845 −1.03941 −0.519704 0.854347i \(-0.673958\pi\)
−0.519704 + 0.854347i \(0.673958\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.00000 0.329293 0.164646 0.986353i \(-0.447352\pi\)
0.164646 + 0.986353i \(0.447352\pi\)
\(84\) 0 0
\(85\) −2.32016 −0.251657
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −7.08171 −0.750660 −0.375330 0.926891i \(-0.622471\pi\)
−0.375330 + 0.926891i \(0.622471\pi\)
\(90\) 0 0
\(91\) −0.156743 −0.0164311
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.773387 0.0793479
\(96\) 0 0
\(97\) 1.40187 0.142339 0.0711693 0.997464i \(-0.477327\pi\)
0.0711693 + 0.997464i \(0.477327\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 5.01184 0.498697 0.249348 0.968414i \(-0.419784\pi\)
0.249348 + 0.968414i \(0.419784\pi\)
\(102\) 0 0
\(103\) −9.15674 −0.902241 −0.451120 0.892463i \(-0.648975\pi\)
−0.451120 + 0.892463i \(0.648975\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.60997 −0.155641 −0.0778207 0.996967i \(-0.524796\pi\)
−0.0778207 + 0.996967i \(0.524796\pi\)
\(108\) 0 0
\(109\) −14.3202 −1.37162 −0.685811 0.727779i \(-0.740553\pi\)
−0.685811 + 0.727779i \(0.740553\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −4.98148 −0.468619 −0.234309 0.972162i \(-0.575283\pi\)
−0.234309 + 0.972162i \(0.575283\pi\)
\(114\) 0 0
\(115\) −0.598128 −0.0557757
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 5.75487 0.527548
\(120\) 0 0
\(121\) 30.7971 2.79973
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −7.27129 −0.650364
\(126\) 0 0
\(127\) 12.8366 1.13906 0.569531 0.821970i \(-0.307125\pi\)
0.569531 + 0.821970i \(0.307125\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 20.0750 1.75396 0.876982 0.480523i \(-0.159553\pi\)
0.876982 + 0.480523i \(0.159553\pi\)
\(132\) 0 0
\(133\) −1.91829 −0.166337
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 7.30165 0.623822 0.311911 0.950111i \(-0.399031\pi\)
0.311911 + 0.950111i \(0.399031\pi\)
\(138\) 0 0
\(139\) 4.67316 0.396372 0.198186 0.980164i \(-0.436495\pi\)
0.198186 + 0.980164i \(0.436495\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.528258 0.0441752
\(144\) 0 0
\(145\) −2.91829 −0.242351
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −20.2318 −1.65745 −0.828726 0.559655i \(-0.810934\pi\)
−0.828726 + 0.559655i \(0.810934\pi\)
\(150\) 0 0
\(151\) 19.7154 1.60441 0.802207 0.597047i \(-0.203659\pi\)
0.802207 + 0.597047i \(0.203659\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0.710194 0.0570442
\(156\) 0 0
\(157\) 8.67316 0.692194 0.346097 0.938199i \(-0.387507\pi\)
0.346097 + 0.938199i \(0.387507\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.48358 0.116923
\(162\) 0 0
\(163\) 9.32016 0.730011 0.365006 0.931005i \(-0.381067\pi\)
0.365006 + 0.931005i \(0.381067\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −18.7482 −1.45078 −0.725389 0.688339i \(-0.758340\pi\)
−0.725389 + 0.688339i \(0.758340\pi\)
\(168\) 0 0
\(169\) −12.9933 −0.999486
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −20.9116 −1.58988 −0.794940 0.606688i \(-0.792498\pi\)
−0.794940 + 0.606688i \(0.792498\pi\)
\(174\) 0 0
\(175\) 8.44407 0.638312
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −16.9183 −1.26453 −0.632266 0.774751i \(-0.717875\pi\)
−0.632266 + 0.774751i \(0.717875\pi\)
\(180\) 0 0
\(181\) −12.8855 −0.957768 −0.478884 0.877878i \(-0.658959\pi\)
−0.478884 + 0.877878i \(0.658959\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −7.14490 −0.525304
\(186\) 0 0
\(187\) −19.3952 −1.41832
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −11.1054 −0.803558 −0.401779 0.915737i \(-0.631608\pi\)
−0.401779 + 0.915737i \(0.631608\pi\)
\(192\) 0 0
\(193\) 17.7549 1.27802 0.639012 0.769197i \(-0.279343\pi\)
0.639012 + 0.769197i \(0.279343\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −15.8669 −1.13047 −0.565236 0.824929i \(-0.691215\pi\)
−0.565236 + 0.824929i \(0.691215\pi\)
\(198\) 0 0
\(199\) 14.8299 1.05126 0.525632 0.850712i \(-0.323829\pi\)
0.525632 + 0.850712i \(0.323829\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 7.23845 0.508040
\(204\) 0 0
\(205\) −2.27129 −0.158634
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 6.46507 0.447198
\(210\) 0 0
\(211\) 10.2385 0.704844 0.352422 0.935841i \(-0.385358\pi\)
0.352422 + 0.935841i \(0.385358\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −4.88793 −0.333354
\(216\) 0 0
\(217\) −1.76155 −0.119582
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −0.245129 −0.0164892
\(222\) 0 0
\(223\) −11.4019 −0.763526 −0.381763 0.924260i \(-0.624683\pi\)
−0.381763 + 0.924260i \(0.624683\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3.30832 −0.219581 −0.109791 0.993955i \(-0.535018\pi\)
−0.109791 + 0.993955i \(0.535018\pi\)
\(228\) 0 0
\(229\) 11.6798 0.771825 0.385913 0.922535i \(-0.373887\pi\)
0.385913 + 0.922535i \(0.373887\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −19.8855 −1.30274 −0.651370 0.758761i \(-0.725805\pi\)
−0.651370 + 0.758761i \(0.725805\pi\)
\(234\) 0 0
\(235\) 3.51642 0.229386
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −9.40187 −0.608157 −0.304078 0.952647i \(-0.598348\pi\)
−0.304078 + 0.952647i \(0.598348\pi\)
\(240\) 0 0
\(241\) 8.82990 0.568784 0.284392 0.958708i \(-0.408208\pi\)
0.284392 + 0.958708i \(0.408208\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2.56777 −0.164049
\(246\) 0 0
\(247\) 0.0817097 0.00519906
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −4.20810 −0.265613 −0.132806 0.991142i \(-0.542399\pi\)
−0.132806 + 0.991142i \(0.542399\pi\)
\(252\) 0 0
\(253\) −5.00000 −0.314347
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 30.0052 1.87167 0.935835 0.352438i \(-0.114647\pi\)
0.935835 + 0.352438i \(0.114647\pi\)
\(258\) 0 0
\(259\) 17.7220 1.10119
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −20.3202 −1.25299 −0.626497 0.779423i \(-0.715512\pi\)
−0.626497 + 0.779423i \(0.715512\pi\)
\(264\) 0 0
\(265\) −2.55861 −0.157174
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 21.5586 1.31445 0.657226 0.753694i \(-0.271730\pi\)
0.657226 + 0.753694i \(0.271730\pi\)
\(270\) 0 0
\(271\) −12.4769 −0.757918 −0.378959 0.925413i \(-0.623718\pi\)
−0.378959 + 0.925413i \(0.623718\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −28.4584 −1.71611
\(276\) 0 0
\(277\) −1.07503 −0.0645925 −0.0322962 0.999478i \(-0.510282\pi\)
−0.0322962 + 0.999478i \(0.510282\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −24.8973 −1.48525 −0.742624 0.669709i \(-0.766419\pi\)
−0.742624 + 0.669709i \(0.766419\pi\)
\(282\) 0 0
\(283\) −28.1501 −1.67335 −0.836674 0.547701i \(-0.815503\pi\)
−0.836674 + 0.547701i \(0.815503\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5.63365 0.332544
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −5.07503 −0.296487 −0.148243 0.988951i \(-0.547362\pi\)
−0.148243 + 0.988951i \(0.547362\pi\)
\(294\) 0 0
\(295\) −2.63096 −0.153181
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.0631932 −0.00365456
\(300\) 0 0
\(301\) 12.1239 0.698810
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.0631932 0.00361843
\(306\) 0 0
\(307\) 15.0000 0.856095 0.428048 0.903756i \(-0.359202\pi\)
0.428048 + 0.903756i \(0.359202\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −27.0304 −1.53275 −0.766375 0.642393i \(-0.777942\pi\)
−0.766375 + 0.642393i \(0.777942\pi\)
\(312\) 0 0
\(313\) 1.47691 0.0834796 0.0417398 0.999129i \(-0.486710\pi\)
0.0417398 + 0.999129i \(0.486710\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 11.4769 0.644607 0.322304 0.946636i \(-0.395543\pi\)
0.322304 + 0.946636i \(0.395543\pi\)
\(318\) 0 0
\(319\) −24.3952 −1.36587
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −3.00000 −0.166924
\(324\) 0 0
\(325\) −0.359676 −0.0199512
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −8.72203 −0.480861
\(330\) 0 0
\(331\) −20.1239 −1.10611 −0.553055 0.833145i \(-0.686538\pi\)
−0.553055 + 0.833145i \(0.686538\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −4.95113 −0.270509
\(336\) 0 0
\(337\) −9.15007 −0.498436 −0.249218 0.968447i \(-0.580174\pi\)
−0.249218 + 0.968447i \(0.580174\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 5.93681 0.321496
\(342\) 0 0
\(343\) 19.7971 1.06894
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −7.70352 −0.413546 −0.206773 0.978389i \(-0.566296\pi\)
−0.206773 + 0.978389i \(0.566296\pi\)
\(348\) 0 0
\(349\) 0.0750332 0.00401644 0.00200822 0.999998i \(-0.499361\pi\)
0.00200822 + 0.999998i \(0.499361\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −13.8299 −0.736092 −0.368046 0.929808i \(-0.619973\pi\)
−0.368046 + 0.929808i \(0.619973\pi\)
\(354\) 0 0
\(355\) 3.70600 0.196694
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 4.82990 0.254913 0.127456 0.991844i \(-0.459319\pi\)
0.127456 + 0.991844i \(0.459319\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 8.87609 0.464596
\(366\) 0 0
\(367\) −12.7549 −0.665799 −0.332899 0.942962i \(-0.608027\pi\)
−0.332899 + 0.942962i \(0.608027\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 6.34632 0.329485
\(372\) 0 0
\(373\) 16.8788 0.873950 0.436975 0.899474i \(-0.356050\pi\)
0.436975 + 0.899474i \(0.356050\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −0.308322 −0.0158794
\(378\) 0 0
\(379\) 7.48358 0.384406 0.192203 0.981355i \(-0.438437\pi\)
0.192203 + 0.981355i \(0.438437\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −20.3505 −1.03986 −0.519931 0.854208i \(-0.674043\pi\)
−0.519931 + 0.854208i \(0.674043\pi\)
\(384\) 0 0
\(385\) −9.59145 −0.488826
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −13.5519 −0.687111 −0.343555 0.939132i \(-0.611631\pi\)
−0.343555 + 0.939132i \(0.611631\pi\)
\(390\) 0 0
\(391\) 2.32016 0.117336
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −7.14490 −0.359499
\(396\) 0 0
\(397\) −22.0000 −1.10415 −0.552074 0.833795i \(-0.686163\pi\)
−0.552074 + 0.833795i \(0.686163\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 20.9420 1.04579 0.522896 0.852396i \(-0.324852\pi\)
0.522896 + 0.852396i \(0.324852\pi\)
\(402\) 0 0
\(403\) 0.0750332 0.00373767
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −59.7272 −2.96057
\(408\) 0 0
\(409\) −10.6665 −0.527424 −0.263712 0.964601i \(-0.584947\pi\)
−0.263712 + 0.964601i \(0.584947\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 6.52578 0.321113
\(414\) 0 0
\(415\) 2.32016 0.113892
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 35.3885 1.72884 0.864421 0.502768i \(-0.167685\pi\)
0.864421 + 0.502768i \(0.167685\pi\)
\(420\) 0 0
\(421\) −10.5586 −0.514595 −0.257298 0.966332i \(-0.582832\pi\)
−0.257298 + 0.966332i \(0.582832\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 13.2056 0.640566
\(426\) 0 0
\(427\) −0.156743 −0.00758532
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −11.4085 −0.549530 −0.274765 0.961511i \(-0.588600\pi\)
−0.274765 + 0.961511i \(0.588600\pi\)
\(432\) 0 0
\(433\) −29.4836 −1.41689 −0.708445 0.705766i \(-0.750603\pi\)
−0.708445 + 0.705766i \(0.750603\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.773387 −0.0369961
\(438\) 0 0
\(439\) −2.83658 −0.135383 −0.0676913 0.997706i \(-0.521563\pi\)
−0.0676913 + 0.997706i \(0.521563\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −23.2950 −1.10678 −0.553389 0.832923i \(-0.686666\pi\)
−0.553389 + 0.832923i \(0.686666\pi\)
\(444\) 0 0
\(445\) −5.47691 −0.259630
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 11.1054 0.524096 0.262048 0.965055i \(-0.415602\pi\)
0.262048 + 0.965055i \(0.415602\pi\)
\(450\) 0 0
\(451\) −18.9866 −0.894046
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −0.121223 −0.00568302
\(456\) 0 0
\(457\) −1.89213 −0.0885101 −0.0442551 0.999020i \(-0.514091\pi\)
−0.0442551 + 0.999020i \(0.514091\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −18.9553 −0.882837 −0.441419 0.897301i \(-0.645525\pi\)
−0.441419 + 0.897301i \(0.645525\pi\)
\(462\) 0 0
\(463\) 28.0422 1.30323 0.651616 0.758549i \(-0.274092\pi\)
0.651616 + 0.758549i \(0.274092\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12.1819 0.563713 0.281856 0.959457i \(-0.409050\pi\)
0.281856 + 0.959457i \(0.409050\pi\)
\(468\) 0 0
\(469\) 12.2806 0.567068
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −40.8603 −1.87876
\(474\) 0 0
\(475\) −4.40187 −0.201972
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −17.0699 −0.779942 −0.389971 0.920827i \(-0.627515\pi\)
−0.389971 + 0.920827i \(0.627515\pi\)
\(480\) 0 0
\(481\) −0.754871 −0.0344192
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.08419 0.0492305
\(486\) 0 0
\(487\) 5.59145 0.253373 0.126686 0.991943i \(-0.459566\pi\)
0.126686 + 0.991943i \(0.459566\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 19.8603 0.896281 0.448141 0.893963i \(-0.352086\pi\)
0.448141 + 0.893963i \(0.352086\pi\)
\(492\) 0 0
\(493\) 11.3202 0.509834
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −9.19226 −0.412329
\(498\) 0 0
\(499\) 12.4836 0.558842 0.279421 0.960169i \(-0.409858\pi\)
0.279421 + 0.960169i \(0.409858\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −10.5164 −0.468904 −0.234452 0.972128i \(-0.575330\pi\)
−0.234452 + 0.972128i \(0.575330\pi\)
\(504\) 0 0
\(505\) 3.87609 0.172484
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 24.5258 1.08709 0.543543 0.839381i \(-0.317082\pi\)
0.543543 + 0.839381i \(0.317082\pi\)
\(510\) 0 0
\(511\) −22.0160 −0.973932
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −7.08171 −0.312057
\(516\) 0 0
\(517\) 29.3952 1.29280
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 34.7667 1.52316 0.761579 0.648073i \(-0.224425\pi\)
0.761579 + 0.648073i \(0.224425\pi\)
\(522\) 0 0
\(523\) −33.3624 −1.45883 −0.729417 0.684069i \(-0.760209\pi\)
−0.729417 + 0.684069i \(0.760209\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2.75487 −0.120004
\(528\) 0 0
\(529\) −22.4019 −0.973994
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −0.239966 −0.0103941
\(534\) 0 0
\(535\) −1.24513 −0.0538316
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −21.4651 −0.924566
\(540\) 0 0
\(541\) 20.4702 0.880084 0.440042 0.897977i \(-0.354964\pi\)
0.440042 + 0.897977i \(0.354964\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −11.0750 −0.474402
\(546\) 0 0
\(547\) −17.7615 −0.759429 −0.379714 0.925104i \(-0.623978\pi\)
−0.379714 + 0.925104i \(0.623978\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −3.77339 −0.160752
\(552\) 0 0
\(553\) 17.7220 0.753618
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.39003 0.0588975 0.0294488 0.999566i \(-0.490625\pi\)
0.0294488 + 0.999566i \(0.490625\pi\)
\(558\) 0 0
\(559\) −0.516418 −0.0218422
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 19.4836 0.821135 0.410568 0.911830i \(-0.365331\pi\)
0.410568 + 0.911830i \(0.365331\pi\)
\(564\) 0 0
\(565\) −3.85262 −0.162081
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 37.3016 1.56377 0.781883 0.623425i \(-0.214259\pi\)
0.781883 + 0.623425i \(0.214259\pi\)
\(570\) 0 0
\(571\) 44.7087 1.87100 0.935500 0.353327i \(-0.114950\pi\)
0.935500 + 0.353327i \(0.114950\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.40435 0.141971
\(576\) 0 0
\(577\) −10.9933 −0.457658 −0.228829 0.973467i \(-0.573490\pi\)
−0.228829 + 0.973467i \(0.573490\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −5.75487 −0.238752
\(582\) 0 0
\(583\) −21.3885 −0.885822
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −13.5519 −0.559348 −0.279674 0.960095i \(-0.590226\pi\)
−0.279674 + 0.960095i \(0.590226\pi\)
\(588\) 0 0
\(589\) 0.918290 0.0378375
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 13.5139 0.554951 0.277475 0.960733i \(-0.410502\pi\)
0.277475 + 0.960733i \(0.410502\pi\)
\(594\) 0 0
\(595\) 4.45074 0.182463
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −43.6403 −1.78310 −0.891548 0.452927i \(-0.850380\pi\)
−0.891548 + 0.452927i \(0.850380\pi\)
\(600\) 0 0
\(601\) 19.0355 0.776475 0.388238 0.921559i \(-0.373084\pi\)
0.388238 + 0.921559i \(0.373084\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 23.8181 0.968342
\(606\) 0 0
\(607\) −43.9800 −1.78509 −0.892546 0.450956i \(-0.851083\pi\)
−0.892546 + 0.450956i \(0.851083\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0.371516 0.0150299
\(612\) 0 0
\(613\) −6.15007 −0.248399 −0.124199 0.992257i \(-0.539636\pi\)
−0.124199 + 0.992257i \(0.539636\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 24.4374 0.983812 0.491906 0.870648i \(-0.336300\pi\)
0.491906 + 0.870648i \(0.336300\pi\)
\(618\) 0 0
\(619\) −5.27129 −0.211871 −0.105936 0.994373i \(-0.533784\pi\)
−0.105936 + 0.994373i \(0.533784\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 13.5848 0.544263
\(624\) 0 0
\(625\) 16.3858 0.655433
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 27.7154 1.10508
\(630\) 0 0
\(631\) 41.4307 1.64933 0.824665 0.565621i \(-0.191363\pi\)
0.824665 + 0.565621i \(0.191363\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 9.92765 0.393967
\(636\) 0 0
\(637\) −0.271289 −0.0107489
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −27.6825 −1.09339 −0.546697 0.837331i \(-0.684115\pi\)
−0.546697 + 0.837331i \(0.684115\pi\)
\(642\) 0 0
\(643\) 43.3885 1.71108 0.855538 0.517740i \(-0.173226\pi\)
0.855538 + 0.517740i \(0.173226\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 38.6640 1.52004 0.760019 0.649900i \(-0.225189\pi\)
0.760019 + 0.649900i \(0.225189\pi\)
\(648\) 0 0
\(649\) −21.9933 −0.863313
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −19.2056 −0.751574 −0.375787 0.926706i \(-0.622628\pi\)
−0.375787 + 0.926706i \(0.622628\pi\)
\(654\) 0 0
\(655\) 15.5258 0.606642
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −5.50210 −0.214331 −0.107166 0.994241i \(-0.534178\pi\)
−0.107166 + 0.994241i \(0.534178\pi\)
\(660\) 0 0
\(661\) 25.8366 1.00493 0.502463 0.864599i \(-0.332427\pi\)
0.502463 + 0.864599i \(0.332427\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.48358 −0.0575308
\(666\) 0 0
\(667\) 2.91829 0.112997
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0.528258 0.0203932
\(672\) 0 0
\(673\) −42.3557 −1.63269 −0.816346 0.577563i \(-0.804004\pi\)
−0.816346 + 0.577563i \(0.804004\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −38.8156 −1.49180 −0.745902 0.666056i \(-0.767981\pi\)
−0.745902 + 0.666056i \(0.767981\pi\)
\(678\) 0 0
\(679\) −2.68920 −0.103202
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −20.6640 −0.790686 −0.395343 0.918534i \(-0.629374\pi\)
−0.395343 + 0.918534i \(0.629374\pi\)
\(684\) 0 0
\(685\) 5.64700 0.215761
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −0.270322 −0.0102984
\(690\) 0 0
\(691\) 38.8232 1.47691 0.738453 0.674305i \(-0.235557\pi\)
0.738453 + 0.674305i \(0.235557\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 3.61416 0.137093
\(696\) 0 0
\(697\) 8.81042 0.333718
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −11.0370 −0.416863 −0.208431 0.978037i \(-0.566836\pi\)
−0.208431 + 0.978037i \(0.566836\pi\)
\(702\) 0 0
\(703\) −9.23845 −0.348435
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −9.61416 −0.361578
\(708\) 0 0
\(709\) 20.6336 0.774913 0.387456 0.921888i \(-0.373354\pi\)
0.387456 + 0.921888i \(0.373354\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −0.710194 −0.0265970
\(714\) 0 0
\(715\) 0.408548 0.0152788
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −37.1804 −1.38660 −0.693298 0.720651i \(-0.743843\pi\)
−0.693298 + 0.720651i \(0.743843\pi\)
\(720\) 0 0
\(721\) 17.5653 0.654166
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 16.6100 0.616879
\(726\) 0 0
\(727\) 20.9049 0.775321 0.387661 0.921802i \(-0.373283\pi\)
0.387661 + 0.921802i \(0.373283\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 18.9605 0.701279
\(732\) 0 0
\(733\) −10.0817 −0.372376 −0.186188 0.982514i \(-0.559613\pi\)
−0.186188 + 0.982514i \(0.559613\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −41.3885 −1.52457
\(738\) 0 0
\(739\) −23.3135 −0.857600 −0.428800 0.903399i \(-0.641064\pi\)
−0.428800 + 0.903399i \(0.641064\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −36.1947 −1.32786 −0.663928 0.747796i \(-0.731112\pi\)
−0.663928 + 0.747796i \(0.731112\pi\)
\(744\) 0 0
\(745\) −15.6470 −0.573262
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 3.08839 0.112847
\(750\) 0 0
\(751\) 45.8788 1.67414 0.837070 0.547096i \(-0.184267\pi\)
0.837070 + 0.547096i \(0.184267\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 15.2476 0.554917
\(756\) 0 0
\(757\) −32.4702 −1.18015 −0.590075 0.807348i \(-0.700902\pi\)
−0.590075 + 0.807348i \(0.700902\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −20.5981 −0.746682 −0.373341 0.927694i \(-0.621788\pi\)
−0.373341 + 0.927694i \(0.621788\pi\)
\(762\) 0 0
\(763\) 27.4702 0.994489
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −0.277966 −0.0100368
\(768\) 0 0
\(769\) 29.7971 1.07451 0.537255 0.843420i \(-0.319461\pi\)
0.537255 + 0.843420i \(0.319461\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −29.2873 −1.05339 −0.526696 0.850054i \(-0.676569\pi\)
−0.526696 + 0.850054i \(0.676569\pi\)
\(774\) 0 0
\(775\) −4.04220 −0.145200
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −2.93681 −0.105222
\(780\) 0 0
\(781\) 30.9800 1.10855
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 6.70771 0.239409
\(786\) 0 0
\(787\) 27.0817 0.965359 0.482679 0.875797i \(-0.339664\pi\)
0.482679 + 0.875797i \(0.339664\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 9.55593 0.339770
\(792\) 0 0
\(793\) 0.00667647 0.000237088 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 30.3135 1.07376 0.536879 0.843659i \(-0.319603\pi\)
0.536879 + 0.843659i \(0.319603\pi\)
\(798\) 0 0
\(799\) −13.6403 −0.482560
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 74.1989 2.61842
\(804\) 0 0
\(805\) 1.14738 0.0404399
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.91829 0.0674435 0.0337217 0.999431i \(-0.489264\pi\)
0.0337217 + 0.999431i \(0.489264\pi\)
\(810\) 0 0
\(811\) 10.1373 0.355967 0.177984 0.984033i \(-0.443043\pi\)
0.177984 + 0.984033i \(0.443043\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 7.20810 0.252489
\(816\) 0 0
\(817\) −6.32016 −0.221114
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 44.6892 1.55966 0.779832 0.625989i \(-0.215305\pi\)
0.779832 + 0.625989i \(0.215305\pi\)
\(822\) 0 0
\(823\) 19.4019 0.676307 0.338153 0.941091i \(-0.390198\pi\)
0.338153 + 0.941091i \(0.390198\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 3.46507 0.120492 0.0602461 0.998184i \(-0.480811\pi\)
0.0602461 + 0.998184i \(0.480811\pi\)
\(828\) 0 0
\(829\) 46.5519 1.61682 0.808408 0.588623i \(-0.200330\pi\)
0.808408 + 0.588623i \(0.200330\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 9.96049 0.345110
\(834\) 0 0
\(835\) −14.4996 −0.501780
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0.343842 0.0118708 0.00593538 0.999982i \(-0.498111\pi\)
0.00593538 + 0.999982i \(0.498111\pi\)
\(840\) 0 0
\(841\) −14.7615 −0.509019
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −10.0489 −0.345692
\(846\) 0 0
\(847\) −59.0777 −2.02993
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 7.14490 0.244924
\(852\) 0 0
\(853\) −39.0684 −1.33768 −0.668838 0.743409i \(-0.733208\pi\)
−0.668838 + 0.743409i \(0.733208\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −45.0355 −1.53838 −0.769192 0.639018i \(-0.779341\pi\)
−0.769192 + 0.639018i \(0.779341\pi\)
\(858\) 0 0
\(859\) −43.1923 −1.47370 −0.736850 0.676056i \(-0.763688\pi\)
−0.736850 + 0.676056i \(0.763688\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 4.11723 0.140152 0.0700761 0.997542i \(-0.477676\pi\)
0.0700761 + 0.997542i \(0.477676\pi\)
\(864\) 0 0
\(865\) −16.1728 −0.549891
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −59.7272 −2.02611
\(870\) 0 0
\(871\) −0.523095 −0.0177244
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 13.9484 0.471543
\(876\) 0 0
\(877\) 6.19626 0.209233 0.104616 0.994513i \(-0.466639\pi\)
0.104616 + 0.994513i \(0.466639\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −32.3001 −1.08822 −0.544110 0.839014i \(-0.683132\pi\)
−0.544110 + 0.839014i \(0.683132\pi\)
\(882\) 0 0
\(883\) −41.4507 −1.39493 −0.697464 0.716620i \(-0.745688\pi\)
−0.697464 + 0.716620i \(0.745688\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 4.60997 0.154788 0.0773938 0.997001i \(-0.475340\pi\)
0.0773938 + 0.997001i \(0.475340\pi\)
\(888\) 0 0
\(889\) −24.6243 −0.825872
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 4.54677 0.152152
\(894\) 0 0
\(895\) −13.0844 −0.437363
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −3.46507 −0.115566
\(900\) 0 0
\(901\) 9.92497 0.330649
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −9.96545 −0.331263
\(906\) 0 0
\(907\) −34.1106 −1.13262 −0.566311 0.824192i \(-0.691630\pi\)
−0.566311 + 0.824192i \(0.691630\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 17.9116 0.593438 0.296719 0.954965i \(-0.404107\pi\)
0.296719 + 0.954965i \(0.404107\pi\)
\(912\) 0 0
\(913\) 19.3952 0.641887
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −38.5097 −1.27170
\(918\) 0 0
\(919\) 12.1079 0.399402 0.199701 0.979857i \(-0.436003\pi\)
0.199701 + 0.979857i \(0.436003\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0.391545 0.0128879
\(924\) 0 0
\(925\) 40.6665 1.33711
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −33.6774 −1.10492 −0.552459 0.833540i \(-0.686310\pi\)
−0.552459 + 0.833540i \(0.686310\pi\)
\(930\) 0 0
\(931\) −3.32016 −0.108814
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −15.0000 −0.490552
\(936\) 0 0
\(937\) 28.6892 0.937235 0.468618 0.883401i \(-0.344752\pi\)
0.468618 + 0.883401i \(0.344752\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 40.3700 1.31602 0.658012 0.753007i \(-0.271397\pi\)
0.658012 + 0.753007i \(0.271397\pi\)
\(942\) 0 0
\(943\) 2.27129 0.0739634
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 6.36904 0.206966 0.103483 0.994631i \(-0.467001\pi\)
0.103483 + 0.994631i \(0.467001\pi\)
\(948\) 0 0
\(949\) 0.937774 0.0304414
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 16.0540 0.520041 0.260021 0.965603i \(-0.416271\pi\)
0.260021 + 0.965603i \(0.416271\pi\)
\(954\) 0 0
\(955\) −8.58877 −0.277926
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −14.0067 −0.452299
\(960\) 0 0
\(961\) −30.1567 −0.972798
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 13.7314 0.442029
\(966\) 0 0
\(967\) 6.73539 0.216595 0.108298 0.994119i \(-0.465460\pi\)
0.108298 + 0.994119i \(0.465460\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 28.4584 0.913273 0.456637 0.889653i \(-0.349054\pi\)
0.456637 + 0.889653i \(0.349054\pi\)
\(972\) 0 0
\(973\) −8.96448 −0.287388
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 12.4271 0.397577 0.198789 0.980042i \(-0.436299\pi\)
0.198789 + 0.980042i \(0.436299\pi\)
\(978\) 0 0
\(979\) −45.7837 −1.46325
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 40.2056 1.28236 0.641180 0.767391i \(-0.278445\pi\)
0.641180 + 0.767391i \(0.278445\pi\)
\(984\) 0 0
\(985\) −12.2713 −0.390996
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 4.88793 0.155427
\(990\) 0 0
\(991\) 13.4085 0.425937 0.212968 0.977059i \(-0.431687\pi\)
0.212968 + 0.977059i \(0.431687\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 11.4693 0.363600
\(996\) 0 0
\(997\) 13.6142 0.431165 0.215582 0.976486i \(-0.430835\pi\)
0.215582 + 0.976486i \(0.430835\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8208.2.a.be.1.3 3
3.2 odd 2 8208.2.a.bo.1.1 3
4.3 odd 2 2052.2.a.d.1.3 3
12.11 even 2 2052.2.a.g.1.1 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2052.2.a.d.1.3 3 4.3 odd 2
2052.2.a.g.1.1 yes 3 12.11 even 2
8208.2.a.be.1.3 3 1.1 even 1 trivial
8208.2.a.bo.1.1 3 3.2 odd 2