Properties

Label 2-8208-1.1-c1-0-109
Degree $2$
Conductor $8208$
Sign $-1$
Analytic cond. $65.5412$
Root an. cond. $8.09575$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.10·5-s − 1.10·7-s − 5.34·11-s + 4.98·13-s + 2·17-s − 19-s + 2.59·23-s − 3.78·25-s + 4.43·29-s − 8.58·31-s − 1.21·35-s − 2.18·37-s + 5.15·41-s + 2.59·43-s − 2.74·47-s − 5.78·49-s − 9.43·53-s − 5.88·55-s + 3.88·59-s + 2.30·61-s + 5.49·65-s + 5.87·67-s − 9.70·71-s − 8.71·73-s + 5.88·77-s − 3.07·79-s + 12.2·83-s + ⋯
L(s)  = 1  + 0.492·5-s − 0.416·7-s − 1.61·11-s + 1.38·13-s + 0.485·17-s − 0.229·19-s + 0.541·23-s − 0.757·25-s + 0.822·29-s − 1.54·31-s − 0.205·35-s − 0.359·37-s + 0.805·41-s + 0.396·43-s − 0.400·47-s − 0.826·49-s − 1.29·53-s − 0.793·55-s + 0.506·59-s + 0.295·61-s + 0.681·65-s + 0.718·67-s − 1.15·71-s − 1.02·73-s + 0.671·77-s − 0.346·79-s + 1.34·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8208\)    =    \(2^{4} \cdot 3^{3} \cdot 19\)
Sign: $-1$
Analytic conductor: \(65.5412\)
Root analytic conductor: \(8.09575\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8208,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 + T \)
good5 \( 1 - 1.10T + 5T^{2} \)
7 \( 1 + 1.10T + 7T^{2} \)
11 \( 1 + 5.34T + 11T^{2} \)
13 \( 1 - 4.98T + 13T^{2} \)
17 \( 1 - 2T + 17T^{2} \)
23 \( 1 - 2.59T + 23T^{2} \)
29 \( 1 - 4.43T + 29T^{2} \)
31 \( 1 + 8.58T + 31T^{2} \)
37 \( 1 + 2.18T + 37T^{2} \)
41 \( 1 - 5.15T + 41T^{2} \)
43 \( 1 - 2.59T + 43T^{2} \)
47 \( 1 + 2.74T + 47T^{2} \)
53 \( 1 + 9.43T + 53T^{2} \)
59 \( 1 - 3.88T + 59T^{2} \)
61 \( 1 - 2.30T + 61T^{2} \)
67 \( 1 - 5.87T + 67T^{2} \)
71 \( 1 + 9.70T + 71T^{2} \)
73 \( 1 + 8.71T + 73T^{2} \)
79 \( 1 + 3.07T + 79T^{2} \)
83 \( 1 - 12.2T + 83T^{2} \)
89 \( 1 - 15.2T + 89T^{2} \)
97 \( 1 + 6.80T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.57662556600407110395775341434, −6.69927185511103922510660723088, −5.98494439047608879258739950773, −5.51588258179016103230044200739, −4.77849366087587392094320636936, −3.74885343474840335626658783589, −3.09848329785363063922537525610, −2.26613139000477533421458403362, −1.29304586266033019118763463219, 0, 1.29304586266033019118763463219, 2.26613139000477533421458403362, 3.09848329785363063922537525610, 3.74885343474840335626658783589, 4.77849366087587392094320636936, 5.51588258179016103230044200739, 5.98494439047608879258739950773, 6.69927185511103922510660723088, 7.57662556600407110395775341434

Graph of the $Z$-function along the critical line