Properties

Label 2-820-164.15-c1-0-81
Degree $2$
Conductor $820$
Sign $-0.962 + 0.269i$
Analytic cond. $6.54773$
Root an. cond. $2.55885$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.41 − 0.0961i)2-s + (−1.29 − 3.13i)3-s + (1.98 − 0.271i)4-s + (−0.453 − 0.891i)5-s + (−2.13 − 4.29i)6-s + (0.443 − 1.84i)7-s + (2.76 − 0.573i)8-s + (−6.01 + 6.01i)9-s + (−0.726 − 1.21i)10-s + (0.546 + 0.640i)11-s + (−3.42 − 5.85i)12-s + (2.07 − 3.39i)13-s + (0.447 − 2.64i)14-s + (−2.20 + 2.57i)15-s + (3.85 − 1.07i)16-s + (0.501 − 6.37i)17-s + ⋯
L(s)  = 1  + (0.997 − 0.0680i)2-s + (−0.749 − 1.80i)3-s + (0.990 − 0.135i)4-s + (−0.203 − 0.398i)5-s + (−0.870 − 1.75i)6-s + (0.167 − 0.697i)7-s + (0.979 − 0.202i)8-s + (−2.00 + 2.00i)9-s + (−0.229 − 0.383i)10-s + (0.164 + 0.193i)11-s + (−0.988 − 1.69i)12-s + (0.576 − 0.941i)13-s + (0.119 − 0.707i)14-s + (−0.568 + 0.666i)15-s + (0.963 − 0.268i)16-s + (0.121 − 1.54i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.962 + 0.269i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.962 + 0.269i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(820\)    =    \(2^{2} \cdot 5 \cdot 41\)
Sign: $-0.962 + 0.269i$
Analytic conductor: \(6.54773\)
Root analytic conductor: \(2.55885\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{820} (671, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 820,\ (\ :1/2),\ -0.962 + 0.269i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.279687 - 2.03341i\)
\(L(\frac12)\) \(\approx\) \(0.279687 - 2.03341i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.41 + 0.0961i)T \)
5 \( 1 + (0.453 + 0.891i)T \)
41 \( 1 + (-1.85 + 6.12i)T \)
good3 \( 1 + (1.29 + 3.13i)T + (-2.12 + 2.12i)T^{2} \)
7 \( 1 + (-0.443 + 1.84i)T + (-6.23 - 3.17i)T^{2} \)
11 \( 1 + (-0.546 - 0.640i)T + (-1.72 + 10.8i)T^{2} \)
13 \( 1 + (-2.07 + 3.39i)T + (-5.90 - 11.5i)T^{2} \)
17 \( 1 + (-0.501 + 6.37i)T + (-16.7 - 2.65i)T^{2} \)
19 \( 1 + (4.52 - 2.77i)T + (8.62 - 16.9i)T^{2} \)
23 \( 1 + (2.18 - 1.58i)T + (7.10 - 21.8i)T^{2} \)
29 \( 1 + (-0.455 - 5.78i)T + (-28.6 + 4.53i)T^{2} \)
31 \( 1 + (0.0388 + 0.119i)T + (-25.0 + 18.2i)T^{2} \)
37 \( 1 + (2.40 - 7.39i)T + (-29.9 - 21.7i)T^{2} \)
43 \( 1 + (-0.0547 + 0.345i)T + (-40.8 - 13.2i)T^{2} \)
47 \( 1 + (-0.0891 - 0.371i)T + (-41.8 + 21.3i)T^{2} \)
53 \( 1 + (-3.05 + 0.240i)T + (52.3 - 8.29i)T^{2} \)
59 \( 1 + (-3.98 - 5.49i)T + (-18.2 + 56.1i)T^{2} \)
61 \( 1 + (-0.403 - 2.54i)T + (-58.0 + 18.8i)T^{2} \)
67 \( 1 + (7.68 + 6.56i)T + (10.4 + 66.1i)T^{2} \)
71 \( 1 + (-5.36 + 4.57i)T + (11.1 - 70.1i)T^{2} \)
73 \( 1 + (7.74 + 7.74i)T + 73iT^{2} \)
79 \( 1 + (-13.3 + 5.51i)T + (55.8 - 55.8i)T^{2} \)
83 \( 1 + 10.5iT - 83T^{2} \)
89 \( 1 + (-10.1 - 2.43i)T + (79.2 + 40.4i)T^{2} \)
97 \( 1 + (2.75 + 2.35i)T + (15.1 + 95.8i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.39944762834342535486343410200, −8.582682433188156394484265208405, −7.64349154670051100575623744811, −7.20412318804332132428413050073, −6.29509669833480616498398721619, −5.53547191811315489431537626148, −4.67823754545820923352680488965, −3.19973914086658688300491905223, −1.87954809848459468687489219723, −0.809634384707404423162976958236, 2.43504980659135380679357712260, 3.89465674523472376390829622410, 4.07697222743532571033242864097, 5.20948988275895327353338676060, 6.10720289111549327074978225854, 6.48773987122504163519952001953, 8.268285130030215994679655865889, 9.017492417300367831982027145894, 10.13487966757379152359701154193, 10.79110743770052477991251731161

Graph of the $Z$-function along the critical line