Properties

Label 2-820-164.11-c1-0-22
Degree $2$
Conductor $820$
Sign $-0.962 - 0.269i$
Analytic cond. $6.54773$
Root an. cond. $2.55885$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.41 + 0.0961i)2-s + (−1.29 + 3.13i)3-s + (1.98 + 0.271i)4-s + (−0.453 + 0.891i)5-s + (−2.13 + 4.29i)6-s + (0.443 + 1.84i)7-s + (2.76 + 0.573i)8-s + (−6.01 − 6.01i)9-s + (−0.726 + 1.21i)10-s + (0.546 − 0.640i)11-s + (−3.42 + 5.85i)12-s + (2.07 + 3.39i)13-s + (0.447 + 2.64i)14-s + (−2.20 − 2.57i)15-s + (3.85 + 1.07i)16-s + (0.501 + 6.37i)17-s + ⋯
L(s)  = 1  + (0.997 + 0.0680i)2-s + (−0.749 + 1.80i)3-s + (0.990 + 0.135i)4-s + (−0.203 + 0.398i)5-s + (−0.870 + 1.75i)6-s + (0.167 + 0.697i)7-s + (0.979 + 0.202i)8-s + (−2.00 − 2.00i)9-s + (−0.229 + 0.383i)10-s + (0.164 − 0.193i)11-s + (−0.988 + 1.69i)12-s + (0.576 + 0.941i)13-s + (0.119 + 0.707i)14-s + (−0.568 − 0.666i)15-s + (0.963 + 0.268i)16-s + (0.121 + 1.54i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.962 - 0.269i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.962 - 0.269i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(820\)    =    \(2^{2} \cdot 5 \cdot 41\)
Sign: $-0.962 - 0.269i$
Analytic conductor: \(6.54773\)
Root analytic conductor: \(2.55885\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{820} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 820,\ (\ :1/2),\ -0.962 - 0.269i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.279687 + 2.03341i\)
\(L(\frac12)\) \(\approx\) \(0.279687 + 2.03341i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.41 - 0.0961i)T \)
5 \( 1 + (0.453 - 0.891i)T \)
41 \( 1 + (-1.85 - 6.12i)T \)
good3 \( 1 + (1.29 - 3.13i)T + (-2.12 - 2.12i)T^{2} \)
7 \( 1 + (-0.443 - 1.84i)T + (-6.23 + 3.17i)T^{2} \)
11 \( 1 + (-0.546 + 0.640i)T + (-1.72 - 10.8i)T^{2} \)
13 \( 1 + (-2.07 - 3.39i)T + (-5.90 + 11.5i)T^{2} \)
17 \( 1 + (-0.501 - 6.37i)T + (-16.7 + 2.65i)T^{2} \)
19 \( 1 + (4.52 + 2.77i)T + (8.62 + 16.9i)T^{2} \)
23 \( 1 + (2.18 + 1.58i)T + (7.10 + 21.8i)T^{2} \)
29 \( 1 + (-0.455 + 5.78i)T + (-28.6 - 4.53i)T^{2} \)
31 \( 1 + (0.0388 - 0.119i)T + (-25.0 - 18.2i)T^{2} \)
37 \( 1 + (2.40 + 7.39i)T + (-29.9 + 21.7i)T^{2} \)
43 \( 1 + (-0.0547 - 0.345i)T + (-40.8 + 13.2i)T^{2} \)
47 \( 1 + (-0.0891 + 0.371i)T + (-41.8 - 21.3i)T^{2} \)
53 \( 1 + (-3.05 - 0.240i)T + (52.3 + 8.29i)T^{2} \)
59 \( 1 + (-3.98 + 5.49i)T + (-18.2 - 56.1i)T^{2} \)
61 \( 1 + (-0.403 + 2.54i)T + (-58.0 - 18.8i)T^{2} \)
67 \( 1 + (7.68 - 6.56i)T + (10.4 - 66.1i)T^{2} \)
71 \( 1 + (-5.36 - 4.57i)T + (11.1 + 70.1i)T^{2} \)
73 \( 1 + (7.74 - 7.74i)T - 73iT^{2} \)
79 \( 1 + (-13.3 - 5.51i)T + (55.8 + 55.8i)T^{2} \)
83 \( 1 - 10.5iT - 83T^{2} \)
89 \( 1 + (-10.1 + 2.43i)T + (79.2 - 40.4i)T^{2} \)
97 \( 1 + (2.75 - 2.35i)T + (15.1 - 95.8i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.79110743770052477991251731161, −10.13487966757379152359701154193, −9.017492417300367831982027145894, −8.268285130030215994679655865889, −6.48773987122504163519952001953, −6.10720289111549327074978225854, −5.20948988275895327353338676060, −4.07697222743532571033242864097, −3.89465674523472376390829622410, −2.43504980659135380679357712260, 0.809634384707404423162976958236, 1.87954809848459468687489219723, 3.19973914086658688300491905223, 4.67823754545820923352680488965, 5.53547191811315489431537626148, 6.29509669833480616498398721619, 7.20412318804332132428413050073, 7.64349154670051100575623744811, 8.582682433188156394484265208405, 10.39944762834342535486343410200

Graph of the $Z$-function along the critical line