Properties

Label 2-82-1.1-c5-0-8
Degree $2$
Conductor $82$
Sign $-1$
Analytic cond. $13.1514$
Root an. cond. $3.62649$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s − 12.3·3-s + 16·4-s − 48.5·5-s + 49.5·6-s + 247.·7-s − 64·8-s − 89.5·9-s + 194.·10-s + 578.·11-s − 198.·12-s − 730.·13-s − 988.·14-s + 602.·15-s + 256·16-s − 661.·17-s + 358.·18-s + 1.18e3·19-s − 777.·20-s − 3.06e3·21-s − 2.31e3·22-s − 3.63e3·23-s + 792.·24-s − 763.·25-s + 2.92e3·26-s + 4.11e3·27-s + 3.95e3·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.794·3-s + 0.5·4-s − 0.869·5-s + 0.561·6-s + 1.90·7-s − 0.353·8-s − 0.368·9-s + 0.614·10-s + 1.44·11-s − 0.397·12-s − 1.19·13-s − 1.34·14-s + 0.690·15-s + 0.250·16-s − 0.554·17-s + 0.260·18-s + 0.754·19-s − 0.434·20-s − 1.51·21-s − 1.01·22-s − 1.43·23-s + 0.280·24-s − 0.244·25-s + 0.847·26-s + 1.08·27-s + 0.953·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 82 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 82 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(82\)    =    \(2 \cdot 41\)
Sign: $-1$
Analytic conductor: \(13.1514\)
Root analytic conductor: \(3.62649\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 82,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4T \)
41 \( 1 + 1.68e3T \)
good3 \( 1 + 12.3T + 243T^{2} \)
5 \( 1 + 48.5T + 3.12e3T^{2} \)
7 \( 1 - 247.T + 1.68e4T^{2} \)
11 \( 1 - 578.T + 1.61e5T^{2} \)
13 \( 1 + 730.T + 3.71e5T^{2} \)
17 \( 1 + 661.T + 1.41e6T^{2} \)
19 \( 1 - 1.18e3T + 2.47e6T^{2} \)
23 \( 1 + 3.63e3T + 6.43e6T^{2} \)
29 \( 1 + 8.18e3T + 2.05e7T^{2} \)
31 \( 1 + 6.77e3T + 2.86e7T^{2} \)
37 \( 1 - 3.83e3T + 6.93e7T^{2} \)
43 \( 1 - 2.52e3T + 1.47e8T^{2} \)
47 \( 1 + 650.T + 2.29e8T^{2} \)
53 \( 1 + 3.11e4T + 4.18e8T^{2} \)
59 \( 1 + 7.17e3T + 7.14e8T^{2} \)
61 \( 1 - 9.00e3T + 8.44e8T^{2} \)
67 \( 1 - 3.40e4T + 1.35e9T^{2} \)
71 \( 1 + 2.19e4T + 1.80e9T^{2} \)
73 \( 1 + 7.31e4T + 2.07e9T^{2} \)
79 \( 1 + 5.93e4T + 3.07e9T^{2} \)
83 \( 1 + 1.79e4T + 3.93e9T^{2} \)
89 \( 1 - 2.65e4T + 5.58e9T^{2} \)
97 \( 1 + 1.22e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.07596886870872444025349802736, −11.58323911563009847804476965868, −11.01429504683582316102844133347, −9.358594025407107207569799773785, −8.114521927470245081930576378181, −7.26037939943799699404819178995, −5.58490875887358646702318490558, −4.22368573812377351655829649360, −1.70885036230087623998601697121, 0, 1.70885036230087623998601697121, 4.22368573812377351655829649360, 5.58490875887358646702318490558, 7.26037939943799699404819178995, 8.114521927470245081930576378181, 9.358594025407107207569799773785, 11.01429504683582316102844133347, 11.58323911563009847804476965868, 12.07596886870872444025349802736

Graph of the $Z$-function along the critical line