Properties

Label 82.6.a.c.1.2
Level $82$
Weight $6$
Character 82.1
Self dual yes
Analytic conductor $13.151$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [82,6,Mod(1,82)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(82, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("82.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 82 = 2 \cdot 41 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 82.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.1514732247\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 730x^{3} - 4674x^{2} + 68790x + 487116 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(10.3879\) of defining polynomial
Character \(\chi\) \(=\) 82.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} -12.3879 q^{3} +16.0000 q^{4} -48.5965 q^{5} +49.5517 q^{6} +247.165 q^{7} -64.0000 q^{8} -89.5391 q^{9} +194.386 q^{10} +578.385 q^{11} -198.207 q^{12} -730.193 q^{13} -988.662 q^{14} +602.010 q^{15} +256.000 q^{16} -661.308 q^{17} +358.157 q^{18} +1187.50 q^{19} -777.544 q^{20} -3061.87 q^{21} -2313.54 q^{22} -3639.95 q^{23} +792.828 q^{24} -763.381 q^{25} +2920.77 q^{26} +4119.47 q^{27} +3954.65 q^{28} -8181.04 q^{29} -2408.04 q^{30} -6778.86 q^{31} -1024.00 q^{32} -7165.00 q^{33} +2645.23 q^{34} -12011.4 q^{35} -1432.63 q^{36} +3832.01 q^{37} -4749.98 q^{38} +9045.58 q^{39} +3110.18 q^{40} -1681.00 q^{41} +12247.5 q^{42} +2523.46 q^{43} +9254.16 q^{44} +4351.29 q^{45} +14559.8 q^{46} -650.878 q^{47} -3171.31 q^{48} +44283.8 q^{49} +3053.52 q^{50} +8192.24 q^{51} -11683.1 q^{52} -31106.7 q^{53} -16477.9 q^{54} -28107.5 q^{55} -15818.6 q^{56} -14710.6 q^{57} +32724.2 q^{58} -7172.42 q^{59} +9632.16 q^{60} +9005.64 q^{61} +27115.5 q^{62} -22131.0 q^{63} +4096.00 q^{64} +35484.8 q^{65} +28660.0 q^{66} +34036.5 q^{67} -10580.9 q^{68} +45091.5 q^{69} +48045.5 q^{70} -21998.3 q^{71} +5730.50 q^{72} -73110.7 q^{73} -15328.0 q^{74} +9456.71 q^{75} +18999.9 q^{76} +142957. q^{77} -36182.3 q^{78} -59345.8 q^{79} -12440.7 q^{80} -29273.7 q^{81} +6724.00 q^{82} -17996.6 q^{83} -48989.9 q^{84} +32137.2 q^{85} -10093.9 q^{86} +101346. q^{87} -37016.7 q^{88} +26533.5 q^{89} -17405.2 q^{90} -180478. q^{91} -58239.3 q^{92} +83976.1 q^{93} +2603.51 q^{94} -57708.1 q^{95} +12685.2 q^{96} -122783. q^{97} -177135. q^{98} -51788.1 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 20 q^{2} - 10 q^{3} + 80 q^{4} - 38 q^{5} + 40 q^{6} - 38 q^{7} - 320 q^{8} + 265 q^{9} + 152 q^{10} + 416 q^{11} - 160 q^{12} + 268 q^{13} + 152 q^{14} + 22 q^{15} + 1280 q^{16} - 2198 q^{17} - 1060 q^{18}+ \cdots - 139442 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) −12.3879 −0.794686 −0.397343 0.917670i \(-0.630068\pi\)
−0.397343 + 0.917670i \(0.630068\pi\)
\(4\) 16.0000 0.500000
\(5\) −48.5965 −0.869321 −0.434660 0.900595i \(-0.643132\pi\)
−0.434660 + 0.900595i \(0.643132\pi\)
\(6\) 49.5517 0.561928
\(7\) 247.165 1.90653 0.953263 0.302142i \(-0.0977017\pi\)
0.953263 + 0.302142i \(0.0977017\pi\)
\(8\) −64.0000 −0.353553
\(9\) −89.5391 −0.368474
\(10\) 194.386 0.614702
\(11\) 578.385 1.44124 0.720619 0.693332i \(-0.243858\pi\)
0.720619 + 0.693332i \(0.243858\pi\)
\(12\) −198.207 −0.397343
\(13\) −730.193 −1.19834 −0.599169 0.800623i \(-0.704502\pi\)
−0.599169 + 0.800623i \(0.704502\pi\)
\(14\) −988.662 −1.34812
\(15\) 602.010 0.690837
\(16\) 256.000 0.250000
\(17\) −661.308 −0.554985 −0.277493 0.960728i \(-0.589503\pi\)
−0.277493 + 0.960728i \(0.589503\pi\)
\(18\) 358.157 0.260550
\(19\) 1187.50 0.754654 0.377327 0.926080i \(-0.376843\pi\)
0.377327 + 0.926080i \(0.376843\pi\)
\(20\) −777.544 −0.434660
\(21\) −3061.87 −1.51509
\(22\) −2313.54 −1.01911
\(23\) −3639.95 −1.43475 −0.717375 0.696687i \(-0.754657\pi\)
−0.717375 + 0.696687i \(0.754657\pi\)
\(24\) 792.828 0.280964
\(25\) −763.381 −0.244282
\(26\) 2920.77 0.847352
\(27\) 4119.47 1.08751
\(28\) 3954.65 0.953263
\(29\) −8181.04 −1.80640 −0.903199 0.429222i \(-0.858788\pi\)
−0.903199 + 0.429222i \(0.858788\pi\)
\(30\) −2408.04 −0.488496
\(31\) −6778.86 −1.26693 −0.633465 0.773771i \(-0.718368\pi\)
−0.633465 + 0.773771i \(0.718368\pi\)
\(32\) −1024.00 −0.176777
\(33\) −7165.00 −1.14533
\(34\) 2645.23 0.392434
\(35\) −12011.4 −1.65738
\(36\) −1432.63 −0.184237
\(37\) 3832.01 0.460174 0.230087 0.973170i \(-0.426099\pi\)
0.230087 + 0.973170i \(0.426099\pi\)
\(38\) −4749.98 −0.533621
\(39\) 9045.58 0.952302
\(40\) 3110.18 0.307351
\(41\) −1681.00 −0.156174
\(42\) 12247.5 1.07133
\(43\) 2523.46 0.208126 0.104063 0.994571i \(-0.466816\pi\)
0.104063 + 0.994571i \(0.466816\pi\)
\(44\) 9254.16 0.720619
\(45\) 4351.29 0.320322
\(46\) 14559.8 1.01452
\(47\) −650.878 −0.0429788 −0.0214894 0.999769i \(-0.506841\pi\)
−0.0214894 + 0.999769i \(0.506841\pi\)
\(48\) −3171.31 −0.198672
\(49\) 44283.8 2.63484
\(50\) 3053.52 0.172733
\(51\) 8192.24 0.441039
\(52\) −11683.1 −0.599169
\(53\) −31106.7 −1.52112 −0.760562 0.649265i \(-0.775076\pi\)
−0.760562 + 0.649265i \(0.775076\pi\)
\(54\) −16477.9 −0.768984
\(55\) −28107.5 −1.25290
\(56\) −15818.6 −0.674059
\(57\) −14710.6 −0.599713
\(58\) 32724.2 1.27732
\(59\) −7172.42 −0.268248 −0.134124 0.990965i \(-0.542822\pi\)
−0.134124 + 0.990965i \(0.542822\pi\)
\(60\) 9632.16 0.345419
\(61\) 9005.64 0.309878 0.154939 0.987924i \(-0.450482\pi\)
0.154939 + 0.987924i \(0.450482\pi\)
\(62\) 27115.5 0.895855
\(63\) −22131.0 −0.702505
\(64\) 4096.00 0.125000
\(65\) 35484.8 1.04174
\(66\) 28660.0 0.809872
\(67\) 34036.5 0.926314 0.463157 0.886276i \(-0.346717\pi\)
0.463157 + 0.886276i \(0.346717\pi\)
\(68\) −10580.9 −0.277493
\(69\) 45091.5 1.14018
\(70\) 48045.5 1.17195
\(71\) −21998.3 −0.517898 −0.258949 0.965891i \(-0.583376\pi\)
−0.258949 + 0.965891i \(0.583376\pi\)
\(72\) 5730.50 0.130275
\(73\) −73110.7 −1.60573 −0.802867 0.596158i \(-0.796693\pi\)
−0.802867 + 0.596158i \(0.796693\pi\)
\(74\) −15328.0 −0.325392
\(75\) 9456.71 0.194127
\(76\) 18999.9 0.377327
\(77\) 142957. 2.74776
\(78\) −36182.3 −0.673379
\(79\) −59345.8 −1.06985 −0.534925 0.844900i \(-0.679660\pi\)
−0.534925 + 0.844900i \(0.679660\pi\)
\(80\) −12440.7 −0.217330
\(81\) −29273.7 −0.495753
\(82\) 6724.00 0.110432
\(83\) −17996.6 −0.286744 −0.143372 0.989669i \(-0.545795\pi\)
−0.143372 + 0.989669i \(0.545795\pi\)
\(84\) −48989.9 −0.757545
\(85\) 32137.2 0.482460
\(86\) −10093.9 −0.147167
\(87\) 101346. 1.43552
\(88\) −37016.7 −0.509554
\(89\) 26533.5 0.355075 0.177538 0.984114i \(-0.443187\pi\)
0.177538 + 0.984114i \(0.443187\pi\)
\(90\) −17405.2 −0.226502
\(91\) −180478. −2.28466
\(92\) −58239.3 −0.717375
\(93\) 83976.1 1.00681
\(94\) 2603.51 0.0303906
\(95\) −57708.1 −0.656036
\(96\) 12685.2 0.140482
\(97\) −122783. −1.32498 −0.662491 0.749070i \(-0.730501\pi\)
−0.662491 + 0.749070i \(0.730501\pi\)
\(98\) −177135. −1.86311
\(99\) −51788.1 −0.531058
\(100\) −12214.1 −0.122141
\(101\) 11474.1 0.111922 0.0559609 0.998433i \(-0.482178\pi\)
0.0559609 + 0.998433i \(0.482178\pi\)
\(102\) −32768.9 −0.311862
\(103\) 68759.1 0.638613 0.319306 0.947652i \(-0.396550\pi\)
0.319306 + 0.947652i \(0.396550\pi\)
\(104\) 46732.3 0.423676
\(105\) 148796. 1.31710
\(106\) 124427. 1.07560
\(107\) −128149. −1.08207 −0.541037 0.840999i \(-0.681968\pi\)
−0.541037 + 0.840999i \(0.681968\pi\)
\(108\) 65911.6 0.543754
\(109\) −194280. −1.56625 −0.783126 0.621863i \(-0.786376\pi\)
−0.783126 + 0.621863i \(0.786376\pi\)
\(110\) 112430. 0.885932
\(111\) −47470.6 −0.365694
\(112\) 63274.4 0.476631
\(113\) −261458. −1.92622 −0.963110 0.269109i \(-0.913271\pi\)
−0.963110 + 0.269109i \(0.913271\pi\)
\(114\) 58842.4 0.424061
\(115\) 176889. 1.24726
\(116\) −130897. −0.903199
\(117\) 65380.8 0.441556
\(118\) 28689.7 0.189680
\(119\) −163452. −1.05809
\(120\) −38528.6 −0.244248
\(121\) 173478. 1.07716
\(122\) −36022.6 −0.219117
\(123\) 20824.1 0.124109
\(124\) −108462. −0.633465
\(125\) 188962. 1.08168
\(126\) 88523.9 0.496746
\(127\) 100571. 0.553302 0.276651 0.960970i \(-0.410775\pi\)
0.276651 + 0.960970i \(0.410775\pi\)
\(128\) −16384.0 −0.0883883
\(129\) −31260.5 −0.165395
\(130\) −141939. −0.736621
\(131\) 363152. 1.84889 0.924444 0.381318i \(-0.124530\pi\)
0.924444 + 0.381318i \(0.124530\pi\)
\(132\) −114640. −0.572666
\(133\) 293508. 1.43877
\(134\) −136146. −0.655003
\(135\) −200192. −0.945392
\(136\) 42323.7 0.196217
\(137\) −40857.5 −0.185982 −0.0929910 0.995667i \(-0.529643\pi\)
−0.0929910 + 0.995667i \(0.529643\pi\)
\(138\) −180366. −0.806226
\(139\) 383567. 1.68385 0.841926 0.539593i \(-0.181422\pi\)
0.841926 + 0.539593i \(0.181422\pi\)
\(140\) −192182. −0.828691
\(141\) 8063.03 0.0341547
\(142\) 87993.3 0.366209
\(143\) −422333. −1.72709
\(144\) −22922.0 −0.0921184
\(145\) 397570. 1.57034
\(146\) 292443. 1.13543
\(147\) −548584. −2.09387
\(148\) 61312.1 0.230087
\(149\) −113425. −0.418546 −0.209273 0.977857i \(-0.567110\pi\)
−0.209273 + 0.977857i \(0.567110\pi\)
\(150\) −37826.8 −0.137269
\(151\) 305548. 1.09053 0.545264 0.838264i \(-0.316429\pi\)
0.545264 + 0.838264i \(0.316429\pi\)
\(152\) −75999.7 −0.266810
\(153\) 59212.9 0.204497
\(154\) −571827. −1.94296
\(155\) 329429. 1.10137
\(156\) 144729. 0.476151
\(157\) −393383. −1.27370 −0.636850 0.770988i \(-0.719763\pi\)
−0.636850 + 0.770988i \(0.719763\pi\)
\(158\) 237383. 0.756498
\(159\) 385348. 1.20882
\(160\) 49762.8 0.153676
\(161\) −899671. −2.73539
\(162\) 117095. 0.350551
\(163\) 143096. 0.421851 0.210925 0.977502i \(-0.432352\pi\)
0.210925 + 0.977502i \(0.432352\pi\)
\(164\) −26896.0 −0.0780869
\(165\) 348194. 0.995660
\(166\) 71986.3 0.202759
\(167\) 114692. 0.318231 0.159116 0.987260i \(-0.449136\pi\)
0.159116 + 0.987260i \(0.449136\pi\)
\(168\) 195960. 0.535665
\(169\) 161888. 0.436012
\(170\) −128549. −0.341151
\(171\) −106327. −0.278070
\(172\) 40375.4 0.104063
\(173\) 296638. 0.753548 0.376774 0.926305i \(-0.377033\pi\)
0.376774 + 0.926305i \(0.377033\pi\)
\(174\) −405385. −1.01507
\(175\) −188681. −0.465730
\(176\) 148067. 0.360309
\(177\) 88851.5 0.213173
\(178\) −106134. −0.251076
\(179\) 486960. 1.13595 0.567977 0.823044i \(-0.307726\pi\)
0.567977 + 0.823044i \(0.307726\pi\)
\(180\) 69620.6 0.160161
\(181\) 709246. 1.60916 0.804582 0.593842i \(-0.202390\pi\)
0.804582 + 0.593842i \(0.202390\pi\)
\(182\) 721914. 1.61550
\(183\) −111561. −0.246255
\(184\) 232957. 0.507261
\(185\) −186222. −0.400039
\(186\) −335904. −0.711924
\(187\) −382491. −0.799865
\(188\) −10414.0 −0.0214894
\(189\) 1.01819e6 2.07336
\(190\) 230832. 0.463888
\(191\) −581986. −1.15433 −0.577164 0.816628i \(-0.695841\pi\)
−0.577164 + 0.816628i \(0.695841\pi\)
\(192\) −50741.0 −0.0993358
\(193\) −4733.90 −0.00914799 −0.00457399 0.999990i \(-0.501456\pi\)
−0.00457399 + 0.999990i \(0.501456\pi\)
\(194\) 491133. 0.936904
\(195\) −439583. −0.827856
\(196\) 708540. 1.31742
\(197\) −227022. −0.416775 −0.208388 0.978046i \(-0.566822\pi\)
−0.208388 + 0.978046i \(0.566822\pi\)
\(198\) 207152. 0.375515
\(199\) −372393. −0.666605 −0.333302 0.942820i \(-0.608163\pi\)
−0.333302 + 0.942820i \(0.608163\pi\)
\(200\) 48856.4 0.0863667
\(201\) −421642. −0.736129
\(202\) −45896.3 −0.0791406
\(203\) −2.02207e6 −3.44394
\(204\) 131076. 0.220519
\(205\) 81690.7 0.135765
\(206\) −275037. −0.451567
\(207\) 325918. 0.528668
\(208\) −186929. −0.299584
\(209\) 686830. 1.08764
\(210\) −595184. −0.931329
\(211\) 443085. 0.685142 0.342571 0.939492i \(-0.388702\pi\)
0.342571 + 0.939492i \(0.388702\pi\)
\(212\) −497708. −0.760562
\(213\) 272514. 0.411566
\(214\) 512597. 0.765141
\(215\) −122631. −0.180928
\(216\) −263646. −0.384492
\(217\) −1.67550e6 −2.41544
\(218\) 777120. 1.10751
\(219\) 905690. 1.27606
\(220\) −449720. −0.626448
\(221\) 482882. 0.665059
\(222\) 189883. 0.258585
\(223\) −445098. −0.599367 −0.299684 0.954039i \(-0.596881\pi\)
−0.299684 + 0.954039i \(0.596881\pi\)
\(224\) −253097. −0.337029
\(225\) 68352.4 0.0900115
\(226\) 1.04583e6 1.36204
\(227\) −194492. −0.250517 −0.125258 0.992124i \(-0.539976\pi\)
−0.125258 + 0.992124i \(0.539976\pi\)
\(228\) −235370. −0.299857
\(229\) 27003.2 0.0340272 0.0170136 0.999855i \(-0.494584\pi\)
0.0170136 + 0.999855i \(0.494584\pi\)
\(230\) −707556. −0.881945
\(231\) −1.77094e6 −2.18360
\(232\) 523587. 0.638658
\(233\) −423773. −0.511380 −0.255690 0.966759i \(-0.582303\pi\)
−0.255690 + 0.966759i \(0.582303\pi\)
\(234\) −261523. −0.312227
\(235\) 31630.4 0.0373624
\(236\) −114759. −0.134124
\(237\) 735172. 0.850194
\(238\) 653810. 0.748185
\(239\) 97400.3 0.110297 0.0551487 0.998478i \(-0.482437\pi\)
0.0551487 + 0.998478i \(0.482437\pi\)
\(240\) 154115. 0.172709
\(241\) 481557. 0.534078 0.267039 0.963686i \(-0.413955\pi\)
0.267039 + 0.963686i \(0.413955\pi\)
\(242\) −693914. −0.761670
\(243\) −638391. −0.693539
\(244\) 144090. 0.154939
\(245\) −2.15204e6 −2.29052
\(246\) −83296.5 −0.0877584
\(247\) −867100. −0.904330
\(248\) 433847. 0.447927
\(249\) 222941. 0.227872
\(250\) −755847. −0.764863
\(251\) 718165. 0.719515 0.359758 0.933046i \(-0.382859\pi\)
0.359758 + 0.933046i \(0.382859\pi\)
\(252\) −354096. −0.351252
\(253\) −2.10530e6 −2.06782
\(254\) −402283. −0.391243
\(255\) −398114. −0.383404
\(256\) 65536.0 0.0625000
\(257\) 24515.5 0.0231530 0.0115765 0.999933i \(-0.496315\pi\)
0.0115765 + 0.999933i \(0.496315\pi\)
\(258\) 125042. 0.116952
\(259\) 947140. 0.877333
\(260\) 567757. 0.520870
\(261\) 732523. 0.665610
\(262\) −1.45261e6 −1.30736
\(263\) −862558. −0.768952 −0.384476 0.923135i \(-0.625618\pi\)
−0.384476 + 0.923135i \(0.625618\pi\)
\(264\) 458560. 0.404936
\(265\) 1.51168e6 1.32234
\(266\) −1.17403e6 −1.01736
\(267\) −328696. −0.282173
\(268\) 544584. 0.463157
\(269\) 169348. 0.142692 0.0713459 0.997452i \(-0.477271\pi\)
0.0713459 + 0.997452i \(0.477271\pi\)
\(270\) 800768. 0.668493
\(271\) 558866. 0.462258 0.231129 0.972923i \(-0.425758\pi\)
0.231129 + 0.972923i \(0.425758\pi\)
\(272\) −169295. −0.138746
\(273\) 2.23575e6 1.81559
\(274\) 163430. 0.131509
\(275\) −441528. −0.352068
\(276\) 721464. 0.570088
\(277\) 510621. 0.399852 0.199926 0.979811i \(-0.435930\pi\)
0.199926 + 0.979811i \(0.435930\pi\)
\(278\) −1.53427e6 −1.19066
\(279\) 606974. 0.466831
\(280\) 768728. 0.585973
\(281\) 1.48924e6 1.12512 0.562560 0.826757i \(-0.309817\pi\)
0.562560 + 0.826757i \(0.309817\pi\)
\(282\) −32252.1 −0.0241510
\(283\) 210948. 0.156570 0.0782852 0.996931i \(-0.475056\pi\)
0.0782852 + 0.996931i \(0.475056\pi\)
\(284\) −351973. −0.258949
\(285\) 714884. 0.521343
\(286\) 1.68933e6 1.22124
\(287\) −415485. −0.297749
\(288\) 91688.1 0.0651376
\(289\) −982529. −0.691992
\(290\) −1.59028e6 −1.11040
\(291\) 1.52103e6 1.05294
\(292\) −1.16977e6 −0.802867
\(293\) 1.99745e6 1.35927 0.679636 0.733549i \(-0.262138\pi\)
0.679636 + 0.733549i \(0.262138\pi\)
\(294\) 2.19434e6 1.48059
\(295\) 348554. 0.233193
\(296\) −245248. −0.162696
\(297\) 2.38264e6 1.56736
\(298\) 453700. 0.295956
\(299\) 2.65787e6 1.71931
\(300\) 151307. 0.0970637
\(301\) 623713. 0.396797
\(302\) −1.22219e6 −0.771120
\(303\) −142140. −0.0889427
\(304\) 303999. 0.188663
\(305\) −437643. −0.269383
\(306\) −236852. −0.144602
\(307\) −3.05903e6 −1.85241 −0.926206 0.377019i \(-0.876949\pi\)
−0.926206 + 0.377019i \(0.876949\pi\)
\(308\) 2.28731e6 1.37388
\(309\) −851784. −0.507497
\(310\) −1.31772e6 −0.778785
\(311\) 1.79184e6 1.05051 0.525253 0.850946i \(-0.323971\pi\)
0.525253 + 0.850946i \(0.323971\pi\)
\(312\) −578917. −0.336690
\(313\) −607904. −0.350731 −0.175365 0.984503i \(-0.556111\pi\)
−0.175365 + 0.984503i \(0.556111\pi\)
\(314\) 1.57353e6 0.900642
\(315\) 1.07549e6 0.610702
\(316\) −949533. −0.534925
\(317\) −1.23260e6 −0.688931 −0.344465 0.938799i \(-0.611940\pi\)
−0.344465 + 0.938799i \(0.611940\pi\)
\(318\) −1.54139e6 −0.854762
\(319\) −4.73179e6 −2.60345
\(320\) −199051. −0.108665
\(321\) 1.58750e6 0.859909
\(322\) 3.59868e6 1.93421
\(323\) −785300. −0.418822
\(324\) −468380. −0.247877
\(325\) 557415. 0.292732
\(326\) −572384. −0.298293
\(327\) 2.40673e6 1.24468
\(328\) 107584. 0.0552158
\(329\) −160874. −0.0819403
\(330\) −1.39277e6 −0.704038
\(331\) −3.89464e6 −1.95388 −0.976938 0.213523i \(-0.931506\pi\)
−0.976938 + 0.213523i \(0.931506\pi\)
\(332\) −287945. −0.143372
\(333\) −343115. −0.169562
\(334\) −458769. −0.225024
\(335\) −1.65406e6 −0.805263
\(336\) −783838. −0.378772
\(337\) 2.60213e6 1.24811 0.624057 0.781379i \(-0.285483\pi\)
0.624057 + 0.781379i \(0.285483\pi\)
\(338\) −647553. −0.308307
\(339\) 3.23892e6 1.53074
\(340\) 514196. 0.241230
\(341\) −3.92079e6 −1.82595
\(342\) 425309. 0.196625
\(343\) 6.79131e6 3.11687
\(344\) −161502. −0.0735836
\(345\) −2.19129e6 −0.991179
\(346\) −1.18655e6 −0.532839
\(347\) 1.45707e6 0.649618 0.324809 0.945780i \(-0.394700\pi\)
0.324809 + 0.945780i \(0.394700\pi\)
\(348\) 1.62154e6 0.717760
\(349\) 1.21466e6 0.533815 0.266908 0.963722i \(-0.413998\pi\)
0.266908 + 0.963722i \(0.413998\pi\)
\(350\) 754725. 0.329321
\(351\) −3.00801e6 −1.30320
\(352\) −592266. −0.254777
\(353\) 217642. 0.0929621 0.0464811 0.998919i \(-0.485199\pi\)
0.0464811 + 0.998919i \(0.485199\pi\)
\(354\) −355406. −0.150736
\(355\) 1.06904e6 0.450219
\(356\) 424537. 0.177538
\(357\) 2.02484e6 0.840852
\(358\) −1.94784e6 −0.803241
\(359\) 2.70007e6 1.10570 0.552852 0.833280i \(-0.313540\pi\)
0.552852 + 0.833280i \(0.313540\pi\)
\(360\) −278482. −0.113251
\(361\) −1.06595e6 −0.430497
\(362\) −2.83698e6 −1.13785
\(363\) −2.14904e6 −0.856008
\(364\) −2.88765e6 −1.14233
\(365\) 3.55292e6 1.39590
\(366\) 446245. 0.174129
\(367\) −811222. −0.314394 −0.157197 0.987567i \(-0.550246\pi\)
−0.157197 + 0.987567i \(0.550246\pi\)
\(368\) −931828. −0.358688
\(369\) 150515. 0.0575459
\(370\) 744888. 0.282870
\(371\) −7.68851e6 −2.90006
\(372\) 1.34362e6 0.503406
\(373\) −1.79672e6 −0.668666 −0.334333 0.942455i \(-0.608511\pi\)
−0.334333 + 0.942455i \(0.608511\pi\)
\(374\) 1.52996e6 0.565590
\(375\) −2.34084e6 −0.859596
\(376\) 41656.2 0.0151953
\(377\) 5.97373e6 2.16467
\(378\) −4.07277e6 −1.46609
\(379\) 1.95509e6 0.699147 0.349573 0.936909i \(-0.386327\pi\)
0.349573 + 0.936909i \(0.386327\pi\)
\(380\) −923330. −0.328018
\(381\) −1.24586e6 −0.439701
\(382\) 2.32795e6 0.816233
\(383\) −558745. −0.194633 −0.0973166 0.995253i \(-0.531026\pi\)
−0.0973166 + 0.995253i \(0.531026\pi\)
\(384\) 202964. 0.0702410
\(385\) −6.94720e6 −2.38868
\(386\) 18935.6 0.00646860
\(387\) −225949. −0.0766889
\(388\) −1.96453e6 −0.662491
\(389\) −1.74964e6 −0.586238 −0.293119 0.956076i \(-0.594693\pi\)
−0.293119 + 0.956076i \(0.594693\pi\)
\(390\) 1.75833e6 0.585382
\(391\) 2.40713e6 0.796265
\(392\) −2.83416e6 −0.931557
\(393\) −4.49871e6 −1.46929
\(394\) 908087. 0.294705
\(395\) 2.88400e6 0.930042
\(396\) −828610. −0.265529
\(397\) −3.62583e6 −1.15460 −0.577299 0.816533i \(-0.695893\pi\)
−0.577299 + 0.816533i \(0.695893\pi\)
\(398\) 1.48957e6 0.471361
\(399\) −3.63595e6 −1.14337
\(400\) −195425. −0.0610705
\(401\) 3.57153e6 1.10916 0.554578 0.832132i \(-0.312880\pi\)
0.554578 + 0.832132i \(0.312880\pi\)
\(402\) 1.68657e6 0.520522
\(403\) 4.94988e6 1.51821
\(404\) 183585. 0.0559609
\(405\) 1.42260e6 0.430969
\(406\) 8.08828e6 2.43524
\(407\) 2.21638e6 0.663220
\(408\) −524303. −0.155931
\(409\) −2.77747e6 −0.820996 −0.410498 0.911861i \(-0.634645\pi\)
−0.410498 + 0.911861i \(0.634645\pi\)
\(410\) −326763. −0.0960004
\(411\) 506140. 0.147797
\(412\) 1.10015e6 0.319306
\(413\) −1.77277e6 −0.511421
\(414\) −1.30367e6 −0.373825
\(415\) 874571. 0.249273
\(416\) 747717. 0.211838
\(417\) −4.75160e6 −1.33813
\(418\) −2.74732e6 −0.769074
\(419\) 2.70148e6 0.751738 0.375869 0.926673i \(-0.377344\pi\)
0.375869 + 0.926673i \(0.377344\pi\)
\(420\) 2.38074e6 0.658549
\(421\) −382826. −0.105268 −0.0526340 0.998614i \(-0.516762\pi\)
−0.0526340 + 0.998614i \(0.516762\pi\)
\(422\) −1.77234e6 −0.484469
\(423\) 58279.0 0.0158366
\(424\) 1.99083e6 0.537799
\(425\) 504830. 0.135573
\(426\) −1.09006e6 −0.291021
\(427\) 2.22588e6 0.590790
\(428\) −2.05039e6 −0.541037
\(429\) 5.23183e6 1.37249
\(430\) 490526. 0.127935
\(431\) −1.17244e6 −0.304016 −0.152008 0.988379i \(-0.548574\pi\)
−0.152008 + 0.988379i \(0.548574\pi\)
\(432\) 1.05458e6 0.271877
\(433\) −6.83222e6 −1.75123 −0.875613 0.483014i \(-0.839542\pi\)
−0.875613 + 0.483014i \(0.839542\pi\)
\(434\) 6.70200e6 1.70797
\(435\) −4.92507e6 −1.24793
\(436\) −3.10848e6 −0.783126
\(437\) −4.32243e6 −1.08274
\(438\) −3.62276e6 −0.902307
\(439\) 5.49132e6 1.35993 0.679963 0.733246i \(-0.261996\pi\)
0.679963 + 0.733246i \(0.261996\pi\)
\(440\) 1.79888e6 0.442966
\(441\) −3.96513e6 −0.970870
\(442\) −1.93153e6 −0.470268
\(443\) 3.85772e6 0.933945 0.466972 0.884272i \(-0.345345\pi\)
0.466972 + 0.884272i \(0.345345\pi\)
\(444\) −759530. −0.182847
\(445\) −1.28944e6 −0.308674
\(446\) 1.78039e6 0.423817
\(447\) 1.40510e6 0.332612
\(448\) 1.01239e6 0.238316
\(449\) −3.75507e6 −0.879027 −0.439514 0.898236i \(-0.644849\pi\)
−0.439514 + 0.898236i \(0.644849\pi\)
\(450\) −273410. −0.0636477
\(451\) −972265. −0.225083
\(452\) −4.18333e6 −0.963110
\(453\) −3.78511e6 −0.866628
\(454\) 777968. 0.177142
\(455\) 8.77062e6 1.98610
\(456\) 941479. 0.212031
\(457\) 2.92297e6 0.654687 0.327344 0.944905i \(-0.393847\pi\)
0.327344 + 0.944905i \(0.393847\pi\)
\(458\) −108013. −0.0240608
\(459\) −2.72424e6 −0.603550
\(460\) 2.83022e6 0.623629
\(461\) −2.53925e6 −0.556485 −0.278242 0.960511i \(-0.589752\pi\)
−0.278242 + 0.960511i \(0.589752\pi\)
\(462\) 7.08376e6 1.54404
\(463\) −2.02151e6 −0.438251 −0.219126 0.975697i \(-0.570320\pi\)
−0.219126 + 0.975697i \(0.570320\pi\)
\(464\) −2.09435e6 −0.451600
\(465\) −4.08094e6 −0.875242
\(466\) 1.69509e6 0.361600
\(467\) −2.05096e6 −0.435175 −0.217588 0.976041i \(-0.569819\pi\)
−0.217588 + 0.976041i \(0.569819\pi\)
\(468\) 1.04609e6 0.220778
\(469\) 8.41265e6 1.76604
\(470\) −126522. −0.0264192
\(471\) 4.87321e6 1.01219
\(472\) 459035. 0.0948398
\(473\) 1.45953e6 0.299959
\(474\) −2.94069e6 −0.601178
\(475\) −906511. −0.184348
\(476\) −2.61524e6 −0.529047
\(477\) 2.78527e6 0.560494
\(478\) −389601. −0.0779921
\(479\) 99964.4 0.0199070 0.00995352 0.999950i \(-0.496832\pi\)
0.00995352 + 0.999950i \(0.496832\pi\)
\(480\) −616458. −0.122124
\(481\) −2.79810e6 −0.551443
\(482\) −1.92623e6 −0.377650
\(483\) 1.11451e7 2.17378
\(484\) 2.77565e6 0.538582
\(485\) 5.96684e6 1.15183
\(486\) 2.55356e6 0.490406
\(487\) −5.14751e6 −0.983500 −0.491750 0.870736i \(-0.663643\pi\)
−0.491750 + 0.870736i \(0.663643\pi\)
\(488\) −576361. −0.109558
\(489\) −1.77266e6 −0.335239
\(490\) 8.60814e6 1.61964
\(491\) −2.90230e6 −0.543298 −0.271649 0.962396i \(-0.587569\pi\)
−0.271649 + 0.962396i \(0.587569\pi\)
\(492\) 333186. 0.0620546
\(493\) 5.41018e6 1.00252
\(494\) 3.46840e6 0.639458
\(495\) 2.51672e6 0.461660
\(496\) −1.73539e6 −0.316733
\(497\) −5.43723e6 −0.987385
\(498\) −891762. −0.161130
\(499\) −1.91686e6 −0.344619 −0.172310 0.985043i \(-0.555123\pi\)
−0.172310 + 0.985043i \(0.555123\pi\)
\(500\) 3.02339e6 0.540840
\(501\) −1.42080e6 −0.252894
\(502\) −2.87266e6 −0.508774
\(503\) 3.75083e6 0.661009 0.330504 0.943804i \(-0.392781\pi\)
0.330504 + 0.943804i \(0.392781\pi\)
\(504\) 1.41638e6 0.248373
\(505\) −557600. −0.0972959
\(506\) 8.42118e6 1.46217
\(507\) −2.00546e6 −0.346493
\(508\) 1.60913e6 0.276651
\(509\) −803464. −0.137459 −0.0687293 0.997635i \(-0.521894\pi\)
−0.0687293 + 0.997635i \(0.521894\pi\)
\(510\) 1.59246e6 0.271108
\(511\) −1.80704e7 −3.06137
\(512\) −262144. −0.0441942
\(513\) 4.89185e6 0.820692
\(514\) −98062.0 −0.0163717
\(515\) −3.34145e6 −0.555159
\(516\) −500168. −0.0826973
\(517\) −376458. −0.0619427
\(518\) −3.78856e6 −0.620368
\(519\) −3.67473e6 −0.598834
\(520\) −2.27103e6 −0.368310
\(521\) −1.17315e7 −1.89348 −0.946738 0.322005i \(-0.895643\pi\)
−0.946738 + 0.322005i \(0.895643\pi\)
\(522\) −2.93009e6 −0.470658
\(523\) 805211. 0.128723 0.0643614 0.997927i \(-0.479499\pi\)
0.0643614 + 0.997927i \(0.479499\pi\)
\(524\) 5.81044e6 0.924444
\(525\) 2.33737e6 0.370109
\(526\) 3.45023e6 0.543731
\(527\) 4.48292e6 0.703127
\(528\) −1.83424e6 −0.286333
\(529\) 6.81292e6 1.05851
\(530\) −6.04671e6 −0.935039
\(531\) 642212. 0.0988422
\(532\) 4.69612e6 0.719384
\(533\) 1.22745e6 0.187149
\(534\) 1.31478e6 0.199527
\(535\) 6.22760e6 0.940668
\(536\) −2.17834e6 −0.327501
\(537\) −6.03243e6 −0.902727
\(538\) −677392. −0.100898
\(539\) 2.56131e7 3.79743
\(540\) −3.20307e6 −0.472696
\(541\) 4.98587e6 0.732399 0.366199 0.930536i \(-0.380659\pi\)
0.366199 + 0.930536i \(0.380659\pi\)
\(542\) −2.23546e6 −0.326866
\(543\) −8.78609e6 −1.27878
\(544\) 677179. 0.0981084
\(545\) 9.44132e6 1.36158
\(546\) −8.94302e6 −1.28381
\(547\) −1.69661e6 −0.242445 −0.121223 0.992625i \(-0.538681\pi\)
−0.121223 + 0.992625i \(0.538681\pi\)
\(548\) −653720. −0.0929910
\(549\) −806358. −0.114182
\(550\) 1.76611e6 0.248950
\(551\) −9.71494e6 −1.36321
\(552\) −2.88586e6 −0.403113
\(553\) −1.46682e7 −2.03970
\(554\) −2.04248e6 −0.282738
\(555\) 2.30691e6 0.317905
\(556\) 6.13707e6 0.841926
\(557\) −1.01622e7 −1.38787 −0.693936 0.720036i \(-0.744125\pi\)
−0.693936 + 0.720036i \(0.744125\pi\)
\(558\) −2.42789e6 −0.330099
\(559\) −1.84261e6 −0.249405
\(560\) −3.07491e6 −0.414346
\(561\) 4.73827e6 0.635642
\(562\) −5.95696e6 −0.795580
\(563\) 7.08368e6 0.941863 0.470931 0.882170i \(-0.343918\pi\)
0.470931 + 0.882170i \(0.343918\pi\)
\(564\) 129008. 0.0170773
\(565\) 1.27059e7 1.67450
\(566\) −843792. −0.110712
\(567\) −7.23546e6 −0.945166
\(568\) 1.40789e6 0.183104
\(569\) −1.31059e6 −0.169702 −0.0848509 0.996394i \(-0.527041\pi\)
−0.0848509 + 0.996394i \(0.527041\pi\)
\(570\) −2.85954e6 −0.368645
\(571\) 1.00475e7 1.28964 0.644819 0.764336i \(-0.276933\pi\)
0.644819 + 0.764336i \(0.276933\pi\)
\(572\) −6.75732e6 −0.863544
\(573\) 7.20961e6 0.917329
\(574\) 1.66194e6 0.210541
\(575\) 2.77867e6 0.350483
\(576\) −366752. −0.0460592
\(577\) 4.30086e6 0.537794 0.268897 0.963169i \(-0.413341\pi\)
0.268897 + 0.963169i \(0.413341\pi\)
\(578\) 3.93012e6 0.489312
\(579\) 58643.2 0.00726978
\(580\) 6.36112e6 0.785170
\(581\) −4.44813e6 −0.546686
\(582\) −6.08412e6 −0.744544
\(583\) −1.79917e7 −2.19230
\(584\) 4.67908e6 0.567713
\(585\) −3.17728e6 −0.383854
\(586\) −7.98979e6 −0.961151
\(587\) 2.17261e6 0.260247 0.130124 0.991498i \(-0.458463\pi\)
0.130124 + 0.991498i \(0.458463\pi\)
\(588\) −8.77735e6 −1.04694
\(589\) −8.04987e6 −0.956094
\(590\) −1.39422e6 −0.164892
\(591\) 2.81233e6 0.331206
\(592\) 980994. 0.115043
\(593\) 1.26237e7 1.47418 0.737089 0.675795i \(-0.236200\pi\)
0.737089 + 0.675795i \(0.236200\pi\)
\(594\) −9.53057e6 −1.10829
\(595\) 7.94321e6 0.919822
\(596\) −1.81480e6 −0.209273
\(597\) 4.61318e6 0.529742
\(598\) −1.06315e7 −1.21574
\(599\) 9.29500e6 1.05848 0.529240 0.848472i \(-0.322477\pi\)
0.529240 + 0.848472i \(0.322477\pi\)
\(600\) −605229. −0.0686344
\(601\) 1.39937e6 0.158033 0.0790164 0.996873i \(-0.474822\pi\)
0.0790164 + 0.996873i \(0.474822\pi\)
\(602\) −2.49485e6 −0.280578
\(603\) −3.04760e6 −0.341322
\(604\) 4.88877e6 0.545264
\(605\) −8.43044e6 −0.936401
\(606\) 568561. 0.0628920
\(607\) −4.76397e6 −0.524804 −0.262402 0.964959i \(-0.584515\pi\)
−0.262402 + 0.964959i \(0.584515\pi\)
\(608\) −1.21599e6 −0.133405
\(609\) 2.50493e7 2.73686
\(610\) 1.75057e6 0.190483
\(611\) 475266. 0.0515032
\(612\) 947407. 0.102249
\(613\) −8.18845e6 −0.880137 −0.440069 0.897964i \(-0.645046\pi\)
−0.440069 + 0.897964i \(0.645046\pi\)
\(614\) 1.22361e7 1.30985
\(615\) −1.01198e6 −0.107891
\(616\) −9.14924e6 −0.971478
\(617\) 1.10755e7 1.17125 0.585624 0.810583i \(-0.300850\pi\)
0.585624 + 0.810583i \(0.300850\pi\)
\(618\) 3.40713e6 0.358854
\(619\) −1.57167e7 −1.64867 −0.824335 0.566102i \(-0.808451\pi\)
−0.824335 + 0.566102i \(0.808451\pi\)
\(620\) 5.27086e6 0.550684
\(621\) −1.49947e7 −1.56030
\(622\) −7.16736e6 −0.742820
\(623\) 6.55818e6 0.676960
\(624\) 2.31567e6 0.238076
\(625\) −6.79731e6 −0.696045
\(626\) 2.43162e6 0.248004
\(627\) −8.50840e6 −0.864329
\(628\) −6.29414e6 −0.636850
\(629\) −2.53414e6 −0.255390
\(630\) −4.30195e6 −0.431831
\(631\) −1.16843e7 −1.16823 −0.584115 0.811671i \(-0.698558\pi\)
−0.584115 + 0.811671i \(0.698558\pi\)
\(632\) 3.79813e6 0.378249
\(633\) −5.48891e6 −0.544473
\(634\) 4.93042e6 0.487147
\(635\) −4.88738e6 −0.480997
\(636\) 6.16557e6 0.604408
\(637\) −3.23357e7 −3.15743
\(638\) 1.89272e7 1.84092
\(639\) 1.96971e6 0.190832
\(640\) 796205. 0.0768378
\(641\) 4.68810e6 0.450663 0.225331 0.974282i \(-0.427654\pi\)
0.225331 + 0.974282i \(0.427654\pi\)
\(642\) −6.35002e6 −0.608047
\(643\) 1.02346e7 0.976214 0.488107 0.872784i \(-0.337688\pi\)
0.488107 + 0.872784i \(0.337688\pi\)
\(644\) −1.43947e7 −1.36769
\(645\) 1.51915e6 0.143781
\(646\) 3.14120e6 0.296152
\(647\) 9.69864e6 0.910857 0.455428 0.890272i \(-0.349486\pi\)
0.455428 + 0.890272i \(0.349486\pi\)
\(648\) 1.87352e6 0.175275
\(649\) −4.14842e6 −0.386608
\(650\) −2.22966e6 −0.206993
\(651\) 2.07560e7 1.91951
\(652\) 2.28954e6 0.210925
\(653\) −2.07808e6 −0.190712 −0.0953562 0.995443i \(-0.530399\pi\)
−0.0953562 + 0.995443i \(0.530399\pi\)
\(654\) −9.62691e6 −0.880121
\(655\) −1.76479e7 −1.60728
\(656\) −430336. −0.0390434
\(657\) 6.54627e6 0.591671
\(658\) 643498. 0.0579405
\(659\) 1.83169e7 1.64300 0.821501 0.570207i \(-0.193137\pi\)
0.821501 + 0.570207i \(0.193137\pi\)
\(660\) 5.57110e6 0.497830
\(661\) 1.46371e7 1.30302 0.651512 0.758638i \(-0.274135\pi\)
0.651512 + 0.758638i \(0.274135\pi\)
\(662\) 1.55785e7 1.38160
\(663\) −5.98191e6 −0.528513
\(664\) 1.15178e6 0.101379
\(665\) −1.42634e7 −1.25075
\(666\) 1.37246e6 0.119898
\(667\) 2.97786e7 2.59173
\(668\) 1.83508e6 0.159116
\(669\) 5.51384e6 0.476309
\(670\) 6.61622e6 0.569407
\(671\) 5.20873e6 0.446607
\(672\) 3.13535e6 0.267833
\(673\) −1.79082e6 −0.152411 −0.0762053 0.997092i \(-0.524280\pi\)
−0.0762053 + 0.997092i \(0.524280\pi\)
\(674\) −1.04085e7 −0.882550
\(675\) −3.14473e6 −0.265658
\(676\) 2.59021e6 0.218006
\(677\) −1.92866e7 −1.61727 −0.808637 0.588307i \(-0.799794\pi\)
−0.808637 + 0.588307i \(0.799794\pi\)
\(678\) −1.29557e7 −1.08240
\(679\) −3.03478e7 −2.52611
\(680\) −2.05678e6 −0.170575
\(681\) 2.40935e6 0.199082
\(682\) 1.56832e7 1.29114
\(683\) −1.77228e6 −0.145372 −0.0726862 0.997355i \(-0.523157\pi\)
−0.0726862 + 0.997355i \(0.523157\pi\)
\(684\) −1.70124e6 −0.139035
\(685\) 1.98553e6 0.161678
\(686\) −2.71652e7 −2.20396
\(687\) −334513. −0.0270409
\(688\) 646007. 0.0520314
\(689\) 2.27139e7 1.82282
\(690\) 8.76516e6 0.700869
\(691\) −3.22531e6 −0.256966 −0.128483 0.991712i \(-0.541011\pi\)
−0.128483 + 0.991712i \(0.541011\pi\)
\(692\) 4.74620e6 0.376774
\(693\) −1.28002e7 −1.01248
\(694\) −5.82829e6 −0.459349
\(695\) −1.86400e7 −1.46381
\(696\) −6.48615e6 −0.507533
\(697\) 1.11166e6 0.0866741
\(698\) −4.85864e6 −0.377465
\(699\) 5.24968e6 0.406387
\(700\) −3.01890e6 −0.232865
\(701\) −9.00705e6 −0.692289 −0.346145 0.938181i \(-0.612509\pi\)
−0.346145 + 0.938181i \(0.612509\pi\)
\(702\) 1.20320e7 0.921502
\(703\) 4.55049e6 0.347272
\(704\) 2.36907e6 0.180155
\(705\) −391835. −0.0296914
\(706\) −870568. −0.0657341
\(707\) 2.83600e6 0.213382
\(708\) 1.42162e6 0.106586
\(709\) 7.30590e6 0.545831 0.272916 0.962038i \(-0.412012\pi\)
0.272916 + 0.962038i \(0.412012\pi\)
\(710\) −4.27617e6 −0.318353
\(711\) 5.31377e6 0.394211
\(712\) −1.69815e6 −0.125538
\(713\) 2.46748e7 1.81773
\(714\) −8.09935e6 −0.594572
\(715\) 2.05239e7 1.50139
\(716\) 7.79136e6 0.567977
\(717\) −1.20659e6 −0.0876519
\(718\) −1.08003e7 −0.781850
\(719\) −2.01264e7 −1.45193 −0.725964 0.687733i \(-0.758606\pi\)
−0.725964 + 0.687733i \(0.758606\pi\)
\(720\) 1.11393e6 0.0800805
\(721\) 1.69949e7 1.21753
\(722\) 4.26382e6 0.304408
\(723\) −5.96549e6 −0.424425
\(724\) 1.13479e7 0.804582
\(725\) 6.24525e6 0.441270
\(726\) 8.59615e6 0.605289
\(727\) 2.23615e7 1.56915 0.784574 0.620035i \(-0.212882\pi\)
0.784574 + 0.620035i \(0.212882\pi\)
\(728\) 1.15506e7 0.807750
\(729\) 1.50219e7 1.04690
\(730\) −1.42117e7 −0.987049
\(731\) −1.66879e6 −0.115507
\(732\) −1.78498e6 −0.123128
\(733\) 2.07541e7 1.42674 0.713369 0.700789i \(-0.247168\pi\)
0.713369 + 0.700789i \(0.247168\pi\)
\(734\) 3.24489e6 0.222310
\(735\) 2.66593e7 1.82025
\(736\) 3.72731e6 0.253630
\(737\) 1.96862e7 1.33504
\(738\) −602061. −0.0406911
\(739\) 1.47054e7 0.990524 0.495262 0.868744i \(-0.335072\pi\)
0.495262 + 0.868744i \(0.335072\pi\)
\(740\) −2.97955e6 −0.200019
\(741\) 1.07416e7 0.718658
\(742\) 3.07540e7 2.05065
\(743\) 2.37184e7 1.57621 0.788105 0.615541i \(-0.211062\pi\)
0.788105 + 0.615541i \(0.211062\pi\)
\(744\) −5.37447e6 −0.355962
\(745\) 5.51205e6 0.363850
\(746\) 7.18690e6 0.472818
\(747\) 1.61140e6 0.105658
\(748\) −6.11985e6 −0.399933
\(749\) −3.16741e7 −2.06300
\(750\) 9.36338e6 0.607826
\(751\) −1.62485e7 −1.05127 −0.525635 0.850710i \(-0.676172\pi\)
−0.525635 + 0.850710i \(0.676172\pi\)
\(752\) −166625. −0.0107447
\(753\) −8.89658e6 −0.571789
\(754\) −2.38949e7 −1.53066
\(755\) −1.48486e7 −0.948019
\(756\) 1.62911e7 1.03668
\(757\) −8.02827e6 −0.509193 −0.254596 0.967047i \(-0.581943\pi\)
−0.254596 + 0.967047i \(0.581943\pi\)
\(758\) −7.82035e6 −0.494371
\(759\) 2.60803e7 1.64326
\(760\) 3.69332e6 0.231944
\(761\) −160140. −0.0100239 −0.00501195 0.999987i \(-0.501595\pi\)
−0.00501195 + 0.999987i \(0.501595\pi\)
\(762\) 4.98345e6 0.310916
\(763\) −4.80193e7 −2.98610
\(764\) −9.31178e6 −0.577164
\(765\) −2.87754e6 −0.177774
\(766\) 2.23498e6 0.137626
\(767\) 5.23725e6 0.321451
\(768\) −811856. −0.0496679
\(769\) −2.65975e7 −1.62191 −0.810953 0.585112i \(-0.801051\pi\)
−0.810953 + 0.585112i \(0.801051\pi\)
\(770\) 2.77888e7 1.68905
\(771\) −303696. −0.0183994
\(772\) −75742.3 −0.00457399
\(773\) 1.66849e6 0.100433 0.0502164 0.998738i \(-0.484009\pi\)
0.0502164 + 0.998738i \(0.484009\pi\)
\(774\) 903795. 0.0542272
\(775\) 5.17485e6 0.309488
\(776\) 7.85813e6 0.468452
\(777\) −1.17331e7 −0.697205
\(778\) 6.99854e6 0.414533
\(779\) −1.99618e6 −0.117857
\(780\) −7.03333e6 −0.413928
\(781\) −1.27235e7 −0.746413
\(782\) −9.62852e6 −0.563044
\(783\) −3.37016e7 −1.96447
\(784\) 1.13366e7 0.658710
\(785\) 1.91171e7 1.10725
\(786\) 1.79948e7 1.03894
\(787\) −1.57735e7 −0.907805 −0.453902 0.891051i \(-0.649968\pi\)
−0.453902 + 0.891051i \(0.649968\pi\)
\(788\) −3.63235e6 −0.208388
\(789\) 1.06853e7 0.611075
\(790\) −1.15360e7 −0.657639
\(791\) −6.46234e7 −3.67239
\(792\) 3.31444e6 0.187757
\(793\) −6.57585e6 −0.371338
\(794\) 1.45033e7 0.816425
\(795\) −1.87266e7 −1.05085
\(796\) −5.95828e6 −0.333302
\(797\) 1.51975e7 0.847473 0.423736 0.905786i \(-0.360718\pi\)
0.423736 + 0.905786i \(0.360718\pi\)
\(798\) 1.45438e7 0.808484
\(799\) 430430. 0.0238526
\(800\) 781702. 0.0431833
\(801\) −2.37579e6 −0.130836
\(802\) −1.42861e7 −0.784292
\(803\) −4.22861e7 −2.31424
\(804\) −6.74627e6 −0.368064
\(805\) 4.37209e7 2.37793
\(806\) −1.97995e7 −1.07354
\(807\) −2.09787e6 −0.113395
\(808\) −734341. −0.0395703
\(809\) −2.97276e7 −1.59694 −0.798469 0.602036i \(-0.794356\pi\)
−0.798469 + 0.602036i \(0.794356\pi\)
\(810\) −5.69040e6 −0.304741
\(811\) −6.48896e6 −0.346436 −0.173218 0.984884i \(-0.555417\pi\)
−0.173218 + 0.984884i \(0.555417\pi\)
\(812\) −3.23531e7 −1.72197
\(813\) −6.92319e6 −0.367350
\(814\) −8.86550e6 −0.468967
\(815\) −6.95397e6 −0.366723
\(816\) 2.09721e6 0.110260
\(817\) 2.99660e6 0.157063
\(818\) 1.11099e7 0.580532
\(819\) 1.61599e7 0.841838
\(820\) 1.30705e6 0.0678825
\(821\) 2.17528e6 0.112631 0.0563155 0.998413i \(-0.482065\pi\)
0.0563155 + 0.998413i \(0.482065\pi\)
\(822\) −2.02456e6 −0.104508
\(823\) −3.19547e7 −1.64450 −0.822252 0.569124i \(-0.807283\pi\)
−0.822252 + 0.569124i \(0.807283\pi\)
\(824\) −4.40059e6 −0.225784
\(825\) 5.46962e6 0.279784
\(826\) 7.09110e6 0.361629
\(827\) 2.95696e7 1.50342 0.751712 0.659492i \(-0.229229\pi\)
0.751712 + 0.659492i \(0.229229\pi\)
\(828\) 5.21469e6 0.264334
\(829\) −5.97210e6 −0.301815 −0.150907 0.988548i \(-0.548220\pi\)
−0.150907 + 0.988548i \(0.548220\pi\)
\(830\) −3.49828e6 −0.176262
\(831\) −6.32553e6 −0.317757
\(832\) −2.99087e6 −0.149792
\(833\) −2.92852e7 −1.46230
\(834\) 1.90064e7 0.946204
\(835\) −5.57364e6 −0.276645
\(836\) 1.09893e7 0.543818
\(837\) −2.79253e7 −1.37780
\(838\) −1.08059e7 −0.531559
\(839\) 9.79030e6 0.480166 0.240083 0.970752i \(-0.422825\pi\)
0.240083 + 0.970752i \(0.422825\pi\)
\(840\) −9.52295e6 −0.465665
\(841\) 4.64183e7 2.26307
\(842\) 1.53130e6 0.0744357
\(843\) −1.84486e7 −0.894117
\(844\) 7.08936e6 0.342571
\(845\) −7.86720e6 −0.379034
\(846\) −233116. −0.0111982
\(847\) 4.28779e7 2.05364
\(848\) −7.96332e6 −0.380281
\(849\) −2.61321e6 −0.124424
\(850\) −2.01932e6 −0.0958644
\(851\) −1.39483e7 −0.660235
\(852\) 4.36022e6 0.205783
\(853\) −6.81098e6 −0.320507 −0.160253 0.987076i \(-0.551231\pi\)
−0.160253 + 0.987076i \(0.551231\pi\)
\(854\) −8.90354e6 −0.417751
\(855\) 5.16713e6 0.241732
\(856\) 8.20155e6 0.382571
\(857\) 1.55658e7 0.723970 0.361985 0.932184i \(-0.382099\pi\)
0.361985 + 0.932184i \(0.382099\pi\)
\(858\) −2.09273e7 −0.970499
\(859\) 3.09084e7 1.42920 0.714601 0.699533i \(-0.246608\pi\)
0.714601 + 0.699533i \(0.246608\pi\)
\(860\) −1.96210e6 −0.0904640
\(861\) 5.14700e6 0.236617
\(862\) 4.68975e6 0.214972
\(863\) 4.79573e6 0.219194 0.109597 0.993976i \(-0.465044\pi\)
0.109597 + 0.993976i \(0.465044\pi\)
\(864\) −4.21834e6 −0.192246
\(865\) −1.44155e7 −0.655075
\(866\) 2.73289e7 1.23830
\(867\) 1.21715e7 0.549916
\(868\) −2.68080e7 −1.20772
\(869\) −3.43248e7 −1.54191
\(870\) 1.97003e7 0.882418
\(871\) −2.48532e7 −1.11004
\(872\) 1.24339e7 0.553754
\(873\) 1.09939e7 0.488221
\(874\) 1.72897e7 0.765613
\(875\) 4.67048e7 2.06225
\(876\) 1.44910e7 0.638028
\(877\) −1.53698e6 −0.0674789 −0.0337395 0.999431i \(-0.510742\pi\)
−0.0337395 + 0.999431i \(0.510742\pi\)
\(878\) −2.19653e7 −0.961613
\(879\) −2.47443e7 −1.08020
\(880\) −7.19552e6 −0.313224
\(881\) 2.29260e7 0.995150 0.497575 0.867421i \(-0.334224\pi\)
0.497575 + 0.867421i \(0.334224\pi\)
\(882\) 1.58605e7 0.686509
\(883\) 1.14096e7 0.492459 0.246229 0.969212i \(-0.420808\pi\)
0.246229 + 0.969212i \(0.420808\pi\)
\(884\) 7.72611e6 0.332530
\(885\) −4.31787e6 −0.185315
\(886\) −1.54309e7 −0.660399
\(887\) −2.52073e7 −1.07577 −0.537883 0.843020i \(-0.680776\pi\)
−0.537883 + 0.843020i \(0.680776\pi\)
\(888\) 3.03812e6 0.129292
\(889\) 2.48576e7 1.05488
\(890\) 5.15775e6 0.218266
\(891\) −1.69315e7 −0.714498
\(892\) −7.12156e6 −0.299684
\(893\) −772914. −0.0324342
\(894\) −5.62040e6 −0.235193
\(895\) −2.36645e7 −0.987508
\(896\) −4.04956e6 −0.168515
\(897\) −3.29255e7 −1.36632
\(898\) 1.50203e7 0.621566
\(899\) 5.54582e7 2.28858
\(900\) 1.09364e6 0.0450057
\(901\) 2.05711e7 0.844201
\(902\) 3.88906e6 0.159158
\(903\) −7.72651e6 −0.315329
\(904\) 1.67333e7 0.681021
\(905\) −3.44668e7 −1.39888
\(906\) 1.51404e7 0.612798
\(907\) −4.31698e7 −1.74246 −0.871229 0.490877i \(-0.836677\pi\)
−0.871229 + 0.490877i \(0.836677\pi\)
\(908\) −3.11187e6 −0.125258
\(909\) −1.02738e6 −0.0412402
\(910\) −3.50825e7 −1.40439
\(911\) −4.82799e7 −1.92739 −0.963697 0.266997i \(-0.913969\pi\)
−0.963697 + 0.266997i \(0.913969\pi\)
\(912\) −3.76592e6 −0.149928
\(913\) −1.04090e7 −0.413267
\(914\) −1.16919e7 −0.462934
\(915\) 5.42149e6 0.214075
\(916\) 432051. 0.0170136
\(917\) 8.97587e7 3.52495
\(918\) 1.08970e7 0.426774
\(919\) −1.43630e6 −0.0560992 −0.0280496 0.999607i \(-0.508930\pi\)
−0.0280496 + 0.999607i \(0.508930\pi\)
\(920\) −1.13209e7 −0.440972
\(921\) 3.78950e7 1.47209
\(922\) 1.01570e7 0.393494
\(923\) 1.60630e7 0.620616
\(924\) −2.83350e7 −1.09180
\(925\) −2.92528e6 −0.112412
\(926\) 8.08604e6 0.309891
\(927\) −6.15663e6 −0.235312
\(928\) 8.37738e6 0.319329
\(929\) 2.02185e7 0.768617 0.384308 0.923205i \(-0.374440\pi\)
0.384308 + 0.923205i \(0.374440\pi\)
\(930\) 1.63238e7 0.618890
\(931\) 5.25868e7 1.98839
\(932\) −6.78037e6 −0.255690
\(933\) −2.21972e7 −0.834823
\(934\) 8.20383e6 0.307715
\(935\) 1.85877e7 0.695339
\(936\) −4.18437e6 −0.156114
\(937\) −5.07141e7 −1.88703 −0.943517 0.331325i \(-0.892504\pi\)
−0.943517 + 0.331325i \(0.892504\pi\)
\(938\) −3.36506e7 −1.24878
\(939\) 7.53067e6 0.278721
\(940\) 506086. 0.0186812
\(941\) −2.49099e7 −0.917059 −0.458530 0.888679i \(-0.651624\pi\)
−0.458530 + 0.888679i \(0.651624\pi\)
\(942\) −1.94928e7 −0.715727
\(943\) 6.11876e6 0.224070
\(944\) −1.83614e6 −0.0670619
\(945\) −4.94805e7 −1.80242
\(946\) −5.83813e6 −0.212103
\(947\) 4.67107e7 1.69255 0.846274 0.532748i \(-0.178841\pi\)
0.846274 + 0.532748i \(0.178841\pi\)
\(948\) 1.17628e7 0.425097
\(949\) 5.33849e7 1.92421
\(950\) 3.62604e6 0.130354
\(951\) 1.52694e7 0.547484
\(952\) 1.04610e7 0.374092
\(953\) 2.65207e7 0.945916 0.472958 0.881085i \(-0.343186\pi\)
0.472958 + 0.881085i \(0.343186\pi\)
\(954\) −1.11411e7 −0.396329
\(955\) 2.82825e7 1.00348
\(956\) 1.55840e6 0.0551487
\(957\) 5.86171e7 2.06892
\(958\) −399858. −0.0140764
\(959\) −1.00986e7 −0.354579
\(960\) 2.46583e6 0.0863546
\(961\) 1.73239e7 0.605112
\(962\) 1.11924e7 0.389929
\(963\) 1.14744e7 0.398716
\(964\) 7.70491e6 0.267039
\(965\) 230051. 0.00795253
\(966\) −4.45803e7 −1.53709
\(967\) −3.83145e7 −1.31764 −0.658820 0.752301i \(-0.728944\pi\)
−0.658820 + 0.752301i \(0.728944\pi\)
\(968\) −1.11026e7 −0.380835
\(969\) 9.72824e6 0.332832
\(970\) −2.38673e7 −0.814469
\(971\) −2.31694e7 −0.788619 −0.394309 0.918978i \(-0.629016\pi\)
−0.394309 + 0.918978i \(0.629016\pi\)
\(972\) −1.02143e7 −0.346769
\(973\) 9.48044e7 3.21031
\(974\) 2.05900e7 0.695440
\(975\) −6.90522e6 −0.232630
\(976\) 2.30544e6 0.0774694
\(977\) −2.96660e7 −0.994312 −0.497156 0.867661i \(-0.665622\pi\)
−0.497156 + 0.867661i \(0.665622\pi\)
\(978\) 7.09066e6 0.237050
\(979\) 1.53466e7 0.511747
\(980\) −3.44326e7 −1.14526
\(981\) 1.73957e7 0.577123
\(982\) 1.16092e7 0.384170
\(983\) −3.02838e6 −0.0999602 −0.0499801 0.998750i \(-0.515916\pi\)
−0.0499801 + 0.998750i \(0.515916\pi\)
\(984\) −1.33274e6 −0.0438792
\(985\) 1.10325e7 0.362311
\(986\) −2.16407e7 −0.708892
\(987\) 1.99290e6 0.0651168
\(988\) −1.38736e7 −0.452165
\(989\) −9.18529e6 −0.298609
\(990\) −1.00669e7 −0.326443
\(991\) −1.17709e7 −0.380738 −0.190369 0.981713i \(-0.560969\pi\)
−0.190369 + 0.981713i \(0.560969\pi\)
\(992\) 6.94156e6 0.223964
\(993\) 4.82465e7 1.55272
\(994\) 2.17489e7 0.698187
\(995\) 1.80970e7 0.579493
\(996\) 3.56705e6 0.113936
\(997\) −1.39658e7 −0.444969 −0.222484 0.974936i \(-0.571417\pi\)
−0.222484 + 0.974936i \(0.571417\pi\)
\(998\) 7.66745e6 0.243683
\(999\) 1.57858e7 0.500442
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 82.6.a.c.1.2 5
3.2 odd 2 738.6.a.k.1.5 5
4.3 odd 2 656.6.a.c.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
82.6.a.c.1.2 5 1.1 even 1 trivial
656.6.a.c.1.4 5 4.3 odd 2
738.6.a.k.1.5 5 3.2 odd 2