L(s) = 1 | + (−0.190 + 0.330i)2-s + (0.927 + 1.60i)4-s + (−1.11 + 1.93i)5-s + (−2 − 1.73i)7-s − 1.47·8-s + (−0.427 − 0.739i)10-s + (−1.5 − 2.59i)11-s − 13-s + (0.954 − 0.330i)14-s + (−1.57 + 2.72i)16-s + (−3.73 − 6.47i)17-s + (−1.5 + 2.59i)19-s − 4.14·20-s + 1.14·22-s + (−1.88 + 3.25i)23-s + ⋯ |
L(s) = 1 | + (−0.135 + 0.233i)2-s + (0.463 + 0.802i)4-s + (−0.499 + 0.866i)5-s + (−0.755 − 0.654i)7-s − 0.520·8-s + (−0.135 − 0.233i)10-s + (−0.452 − 0.783i)11-s − 0.277·13-s + (0.255 − 0.0884i)14-s + (−0.393 + 0.681i)16-s + (−0.906 − 1.56i)17-s + (−0.344 + 0.596i)19-s − 0.927·20-s + 0.244·22-s + (−0.392 + 0.679i)23-s + ⋯ |
Λ(s)=(=(819s/2ΓC(s)L(s)(−0.605+0.795i)Λ(2−s)
Λ(s)=(=(819s/2ΓC(s+1/2)L(s)(−0.605+0.795i)Λ(1−s)
Degree: |
2 |
Conductor: |
819
= 32⋅7⋅13
|
Sign: |
−0.605+0.795i
|
Analytic conductor: |
6.53974 |
Root analytic conductor: |
2.55729 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ819(352,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 819, ( :1/2), −0.605+0.795i)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(2+1.73i)T |
| 13 | 1+T |
good | 2 | 1+(0.190−0.330i)T+(−1−1.73i)T2 |
| 5 | 1+(1.11−1.93i)T+(−2.5−4.33i)T2 |
| 11 | 1+(1.5+2.59i)T+(−5.5+9.52i)T2 |
| 17 | 1+(3.73+6.47i)T+(−8.5+14.7i)T2 |
| 19 | 1+(1.5−2.59i)T+(−9.5−16.4i)T2 |
| 23 | 1+(1.88−3.25i)T+(−11.5−19.9i)T2 |
| 29 | 1−4.47T+29T2 |
| 31 | 1+(2.5+4.33i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−4.35+7.54i)T+(−18.5−32.0i)T2 |
| 41 | 1+4.47T+41T2 |
| 43 | 1+8T+43T2 |
| 47 | 1+(−0.736+1.27i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−0.736−1.27i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−3.73−6.47i)T+(−29.5+51.0i)T2 |
| 61 | 1+(1.5−2.59i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−1.5−2.59i)T+(−33.5+58.0i)T2 |
| 71 | 1+8.94T+71T2 |
| 73 | 1+(5.35+9.27i)T+(−36.5+63.2i)T2 |
| 79 | 1+(5.35−9.27i)T+(−39.5−68.4i)T2 |
| 83 | 1+83T2 |
| 89 | 1+(1.11−1.93i)T+(−44.5−77.0i)T2 |
| 97 | 1+17.4T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.987500996577917549745758689212, −9.010846694561937209699595201593, −8.005039148951372656891182649583, −7.24395070788793534298071109941, −6.80525128809619528921993459716, −5.77584626204260266496645621454, −4.20332010091474315354451546956, −3.29793360871651540590775749793, −2.58352746159938435446194787789, 0,
1.74653484422290677461957236649, 2.82323335618506260299832368688, 4.37097026767864617643545308797, 5.14878668267496541480930348675, 6.29066252686543234164784665600, 6.84514663199993461863276043130, 8.312429183163123294626687571934, 8.785139780967327474852124639337, 9.864856940100742380157567092400