L(s) = 1 | + (−1 − 1.73i)2-s + (−1.99 + 3.46i)4-s + (2.5 − 4.33i)5-s + (2 + 3.46i)7-s + 7.99·8-s − 10·10-s + (24 + 41.5i)11-s + (−1 + 1.73i)13-s + (3.99 − 6.92i)14-s + (−8 − 13.8i)16-s − 114·17-s + 140·19-s + (10 + 17.3i)20-s + (48 − 83.1i)22-s + (−36 + 62.3i)23-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.249 + 0.433i)4-s + (0.223 − 0.387i)5-s + (0.107 + 0.187i)7-s + 0.353·8-s − 0.316·10-s + (0.657 + 1.13i)11-s + (−0.0213 + 0.0369i)13-s + (0.0763 − 0.132i)14-s + (−0.125 − 0.216i)16-s − 1.62·17-s + 1.69·19-s + (0.111 + 0.193i)20-s + (0.465 − 0.805i)22-s + (−0.326 + 0.565i)23-s + ⋯ |
Λ(s)=(=(810s/2ΓC(s)L(s)(−0.173−0.984i)Λ(4−s)
Λ(s)=(=(810s/2ΓC(s+3/2)L(s)(−0.173−0.984i)Λ(1−s)
Degree: |
2 |
Conductor: |
810
= 2⋅34⋅5
|
Sign: |
−0.173−0.984i
|
Analytic conductor: |
47.7915 |
Root analytic conductor: |
6.91314 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ810(271,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 810, ( :3/2), −0.173−0.984i)
|
Particular Values
L(2) |
≈ |
0.6977489726 |
L(21) |
≈ |
0.6977489726 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1+1.73i)T |
| 3 | 1 |
| 5 | 1+(−2.5+4.33i)T |
good | 7 | 1+(−2−3.46i)T+(−171.5+297.i)T2 |
| 11 | 1+(−24−41.5i)T+(−665.5+1.15e3i)T2 |
| 13 | 1+(1−1.73i)T+(−1.09e3−1.90e3i)T2 |
| 17 | 1+114T+4.91e3T2 |
| 19 | 1−140T+6.85e3T2 |
| 23 | 1+(36−62.3i)T+(−6.08e3−1.05e4i)T2 |
| 29 | 1+(105+181.i)T+(−1.21e4+2.11e4i)T2 |
| 31 | 1+(136−235.i)T+(−1.48e4−2.57e4i)T2 |
| 37 | 1+334T+5.06e4T2 |
| 41 | 1+(−99+171.i)T+(−3.44e4−5.96e4i)T2 |
| 43 | 1+(−134−232.i)T+(−3.97e4+6.88e4i)T2 |
| 47 | 1+(108+187.i)T+(−5.19e4+8.99e4i)T2 |
| 53 | 1+78T+1.48e5T2 |
| 59 | 1+(120−207.i)T+(−1.02e5−1.77e5i)T2 |
| 61 | 1+(151+261.i)T+(−1.13e5+1.96e5i)T2 |
| 67 | 1+(298−516.i)T+(−1.50e5−2.60e5i)T2 |
| 71 | 1+768T+3.57e5T2 |
| 73 | 1+478T+3.89e5T2 |
| 79 | 1+(−320−554.i)T+(−2.46e5+4.26e5i)T2 |
| 83 | 1+(−174−301.i)T+(−2.85e5+4.95e5i)T2 |
| 89 | 1−210T+7.04e5T2 |
| 97 | 1+(−767−1.32e3i)T+(−4.56e5+7.90e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.948803142664595719246401922463, −9.294011631793388166509074229030, −8.737245772324103545045651916639, −7.53731043249234003750357538343, −6.85223204447930698287103087803, −5.52004068151849288517290720147, −4.59802095882482836037123259004, −3.63328139636967747284214443138, −2.23787650472173326400753020356, −1.39266072303511398267761898096,
0.20970422872946751674271682152, 1.59847307293441694674770582672, 3.09250217730309355128884354598, 4.21461360619803631157018387916, 5.42876452954204143358306610172, 6.20675495835752627143755411642, 7.04557397410445080895579418777, 7.81110752509252653158896263146, 8.984159280521740295314032792267, 9.250988954048808336708468966002