L(s) = 1 | + (−1 − 1.73i)2-s + (−1.99 + 3.46i)4-s + (2.5 − 4.33i)5-s + (2 + 3.46i)7-s + 7.99·8-s − 10·10-s + (24 + 41.5i)11-s + (−1 + 1.73i)13-s + (3.99 − 6.92i)14-s + (−8 − 13.8i)16-s − 114·17-s + 140·19-s + (10 + 17.3i)20-s + (48 − 83.1i)22-s + (−36 + 62.3i)23-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.249 + 0.433i)4-s + (0.223 − 0.387i)5-s + (0.107 + 0.187i)7-s + 0.353·8-s − 0.316·10-s + (0.657 + 1.13i)11-s + (−0.0213 + 0.0369i)13-s + (0.0763 − 0.132i)14-s + (−0.125 − 0.216i)16-s − 1.62·17-s + 1.69·19-s + (0.111 + 0.193i)20-s + (0.465 − 0.805i)22-s + (−0.326 + 0.565i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.173 - 0.984i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.173 - 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.6977489726\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6977489726\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1 + 1.73i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-2.5 + 4.33i)T \) |
good | 7 | \( 1 + (-2 - 3.46i)T + (-171.5 + 297. i)T^{2} \) |
| 11 | \( 1 + (-24 - 41.5i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + (1 - 1.73i)T + (-1.09e3 - 1.90e3i)T^{2} \) |
| 17 | \( 1 + 114T + 4.91e3T^{2} \) |
| 19 | \( 1 - 140T + 6.85e3T^{2} \) |
| 23 | \( 1 + (36 - 62.3i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + (105 + 181. i)T + (-1.21e4 + 2.11e4i)T^{2} \) |
| 31 | \( 1 + (136 - 235. i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + 334T + 5.06e4T^{2} \) |
| 41 | \( 1 + (-99 + 171. i)T + (-3.44e4 - 5.96e4i)T^{2} \) |
| 43 | \( 1 + (-134 - 232. i)T + (-3.97e4 + 6.88e4i)T^{2} \) |
| 47 | \( 1 + (108 + 187. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + 78T + 1.48e5T^{2} \) |
| 59 | \( 1 + (120 - 207. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (151 + 261. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (298 - 516. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + 768T + 3.57e5T^{2} \) |
| 73 | \( 1 + 478T + 3.89e5T^{2} \) |
| 79 | \( 1 + (-320 - 554. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + (-174 - 301. i)T + (-2.85e5 + 4.95e5i)T^{2} \) |
| 89 | \( 1 - 210T + 7.04e5T^{2} \) |
| 97 | \( 1 + (-767 - 1.32e3i)T + (-4.56e5 + 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.948803142664595719246401922463, −9.294011631793388166509074229030, −8.737245772324103545045651916639, −7.53731043249234003750357538343, −6.85223204447930698287103087803, −5.52004068151849288517290720147, −4.59802095882482836037123259004, −3.63328139636967747284214443138, −2.23787650472173326400753020356, −1.39266072303511398267761898096,
0.20970422872946751674271682152, 1.59847307293441694674770582672, 3.09250217730309355128884354598, 4.21461360619803631157018387916, 5.42876452954204143358306610172, 6.20675495835752627143755411642, 7.04557397410445080895579418777, 7.81110752509252653158896263146, 8.984159280521740295314032792267, 9.250988954048808336708468966002