Properties

Label 2-810-9.7-c3-0-37
Degree $2$
Conductor $810$
Sign $-0.173 + 0.984i$
Analytic cond. $47.7915$
Root an. cond. $6.91314$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1 + 1.73i)2-s + (−1.99 − 3.46i)4-s + (2.5 + 4.33i)5-s + (2 − 3.46i)7-s + 7.99·8-s − 10·10-s + (24 − 41.5i)11-s + (−1 − 1.73i)13-s + (3.99 + 6.92i)14-s + (−8 + 13.8i)16-s − 114·17-s + 140·19-s + (10 − 17.3i)20-s + (48 + 83.1i)22-s + (−36 − 62.3i)23-s + ⋯
L(s)  = 1  + (−0.353 + 0.612i)2-s + (−0.249 − 0.433i)4-s + (0.223 + 0.387i)5-s + (0.107 − 0.187i)7-s + 0.353·8-s − 0.316·10-s + (0.657 − 1.13i)11-s + (−0.0213 − 0.0369i)13-s + (0.0763 + 0.132i)14-s + (−0.125 + 0.216i)16-s − 1.62·17-s + 1.69·19-s + (0.111 − 0.193i)20-s + (0.465 + 0.805i)22-s + (−0.326 − 0.565i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.173 + 0.984i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.173 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(810\)    =    \(2 \cdot 3^{4} \cdot 5\)
Sign: $-0.173 + 0.984i$
Analytic conductor: \(47.7915\)
Root analytic conductor: \(6.91314\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{810} (541, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 810,\ (\ :3/2),\ -0.173 + 0.984i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.6977489726\)
\(L(\frac12)\) \(\approx\) \(0.6977489726\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1 - 1.73i)T \)
3 \( 1 \)
5 \( 1 + (-2.5 - 4.33i)T \)
good7 \( 1 + (-2 + 3.46i)T + (-171.5 - 297. i)T^{2} \)
11 \( 1 + (-24 + 41.5i)T + (-665.5 - 1.15e3i)T^{2} \)
13 \( 1 + (1 + 1.73i)T + (-1.09e3 + 1.90e3i)T^{2} \)
17 \( 1 + 114T + 4.91e3T^{2} \)
19 \( 1 - 140T + 6.85e3T^{2} \)
23 \( 1 + (36 + 62.3i)T + (-6.08e3 + 1.05e4i)T^{2} \)
29 \( 1 + (105 - 181. i)T + (-1.21e4 - 2.11e4i)T^{2} \)
31 \( 1 + (136 + 235. i)T + (-1.48e4 + 2.57e4i)T^{2} \)
37 \( 1 + 334T + 5.06e4T^{2} \)
41 \( 1 + (-99 - 171. i)T + (-3.44e4 + 5.96e4i)T^{2} \)
43 \( 1 + (-134 + 232. i)T + (-3.97e4 - 6.88e4i)T^{2} \)
47 \( 1 + (108 - 187. i)T + (-5.19e4 - 8.99e4i)T^{2} \)
53 \( 1 + 78T + 1.48e5T^{2} \)
59 \( 1 + (120 + 207. i)T + (-1.02e5 + 1.77e5i)T^{2} \)
61 \( 1 + (151 - 261. i)T + (-1.13e5 - 1.96e5i)T^{2} \)
67 \( 1 + (298 + 516. i)T + (-1.50e5 + 2.60e5i)T^{2} \)
71 \( 1 + 768T + 3.57e5T^{2} \)
73 \( 1 + 478T + 3.89e5T^{2} \)
79 \( 1 + (-320 + 554. i)T + (-2.46e5 - 4.26e5i)T^{2} \)
83 \( 1 + (-174 + 301. i)T + (-2.85e5 - 4.95e5i)T^{2} \)
89 \( 1 - 210T + 7.04e5T^{2} \)
97 \( 1 + (-767 + 1.32e3i)T + (-4.56e5 - 7.90e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.250988954048808336708468966002, −8.984159280521740295314032792267, −7.81110752509252653158896263146, −7.04557397410445080895579418777, −6.20675495835752627143755411642, −5.42876452954204143358306610172, −4.21461360619803631157018387916, −3.09250217730309355128884354598, −1.59847307293441694674770582672, −0.20970422872946751674271682152, 1.39266072303511398267761898096, 2.23787650472173326400753020356, 3.63328139636967747284214443138, 4.59802095882482836037123259004, 5.52004068151849288517290720147, 6.85223204447930698287103087803, 7.53731043249234003750357538343, 8.737245772324103545045651916639, 9.294011631793388166509074229030, 9.948803142664595719246401922463

Graph of the $Z$-function along the critical line