Properties

Label 2-80-1.1-c21-0-31
Degree $2$
Conductor $80$
Sign $-1$
Analytic cond. $223.581$
Root an. cond. $14.9526$
Motivic weight $21$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9.28e4·3-s − 9.76e6·5-s − 9.95e8·7-s − 1.83e9·9-s + 8.11e10·11-s + 3.92e11·13-s − 9.06e11·15-s − 5.41e12·17-s + 2.09e13·19-s − 9.24e13·21-s − 4.40e13·23-s + 9.53e13·25-s − 1.14e15·27-s + 1.63e15·29-s − 3.46e14·31-s + 7.53e15·33-s + 9.71e15·35-s + 3.77e16·37-s + 3.64e16·39-s + 3.37e16·41-s + 7.72e16·43-s + 1.79e16·45-s − 3.30e17·47-s + 4.31e17·49-s − 5.02e17·51-s + 1.01e18·53-s − 7.92e17·55-s + ⋯
L(s)  = 1  + 0.907·3-s − 0.447·5-s − 1.33·7-s − 0.175·9-s + 0.943·11-s + 0.790·13-s − 0.406·15-s − 0.651·17-s + 0.783·19-s − 1.20·21-s − 0.221·23-s + 0.199·25-s − 1.06·27-s + 0.723·29-s − 0.0759·31-s + 0.856·33-s + 0.595·35-s + 1.29·37-s + 0.717·39-s + 0.392·41-s + 0.544·43-s + 0.0785·45-s − 0.916·47-s + 0.772·49-s − 0.591·51-s + 0.793·53-s − 0.421·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(22-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s+21/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(80\)    =    \(2^{4} \cdot 5\)
Sign: $-1$
Analytic conductor: \(223.581\)
Root analytic conductor: \(14.9526\)
Motivic weight: \(21\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 80,\ (\ :21/2),\ -1)\)

Particular Values

\(L(11)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{23}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + 9.76e6T \)
good3 \( 1 - 9.28e4T + 1.04e10T^{2} \)
7 \( 1 + 9.95e8T + 5.58e17T^{2} \)
11 \( 1 - 8.11e10T + 7.40e21T^{2} \)
13 \( 1 - 3.92e11T + 2.47e23T^{2} \)
17 \( 1 + 5.41e12T + 6.90e25T^{2} \)
19 \( 1 - 2.09e13T + 7.14e26T^{2} \)
23 \( 1 + 4.40e13T + 3.94e28T^{2} \)
29 \( 1 - 1.63e15T + 5.13e30T^{2} \)
31 \( 1 + 3.46e14T + 2.08e31T^{2} \)
37 \( 1 - 3.77e16T + 8.55e32T^{2} \)
41 \( 1 - 3.37e16T + 7.38e33T^{2} \)
43 \( 1 - 7.72e16T + 2.00e34T^{2} \)
47 \( 1 + 3.30e17T + 1.30e35T^{2} \)
53 \( 1 - 1.01e18T + 1.62e36T^{2} \)
59 \( 1 - 1.45e18T + 1.54e37T^{2} \)
61 \( 1 + 1.02e19T + 3.10e37T^{2} \)
67 \( 1 + 1.20e19T + 2.22e38T^{2} \)
71 \( 1 - 2.19e19T + 7.52e38T^{2} \)
73 \( 1 - 2.08e19T + 1.34e39T^{2} \)
79 \( 1 - 2.08e19T + 7.08e39T^{2} \)
83 \( 1 + 1.55e20T + 1.99e40T^{2} \)
89 \( 1 + 1.59e19T + 8.65e40T^{2} \)
97 \( 1 + 5.45e19T + 5.27e41T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.648041893593141542157386948277, −9.023102844831899818387884075420, −8.035687599340121071326314339330, −6.81170163948774306396379586696, −5.94174356329658032587267461727, −4.18783409468696970297614831357, −3.38927565098459266813178159751, −2.61845682994694176176364519863, −1.16810598363012226569409661041, 0, 1.16810598363012226569409661041, 2.61845682994694176176364519863, 3.38927565098459266813178159751, 4.18783409468696970297614831357, 5.94174356329658032587267461727, 6.81170163948774306396379586696, 8.035687599340121071326314339330, 9.023102844831899818387884075420, 9.648041893593141542157386948277

Graph of the $Z$-function along the critical line