| L(s) = 1 | − 12·2-s + 12.1i·3-s + 80·4-s + 181. i·5-s − 145. i·6-s − 192·8-s + 582·9-s − 2.18e3i·10-s + 1.47e3·11-s + 969. i·12-s + 484. i·13-s − 2.20e3·15-s − 2.81e3·16-s + 3.01e3i·17-s − 6.98e3·18-s + 6.87e3i·19-s + ⋯ |
| L(s) = 1 | − 1.5·2-s + 0.449i·3-s + 1.25·4-s + 1.45i·5-s − 0.673i·6-s − 0.375·8-s + 0.798·9-s − 2.18i·10-s + 1.11·11-s + 0.561i·12-s + 0.220i·13-s − 0.653·15-s − 0.687·16-s + 0.614i·17-s − 1.19·18-s + 1.00i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.755 - 0.654i)\, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & (-0.755 - 0.654i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{7}{2})\) |
\(\approx\) |
\(0.266735 + 0.715443i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.266735 + 0.715443i\) |
| \(L(4)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| good | 2 | \( 1 + 12T + 64T^{2} \) |
| 3 | \( 1 - 12.1iT - 729T^{2} \) |
| 5 | \( 1 - 181. iT - 1.56e4T^{2} \) |
| 11 | \( 1 - 1.47e3T + 1.77e6T^{2} \) |
| 13 | \( 1 - 484. iT - 4.82e6T^{2} \) |
| 17 | \( 1 - 3.01e3iT - 2.41e7T^{2} \) |
| 19 | \( 1 - 6.87e3iT - 4.70e7T^{2} \) |
| 23 | \( 1 + 5.91e3T + 1.48e8T^{2} \) |
| 29 | \( 1 - 3.97e3T + 5.94e8T^{2} \) |
| 31 | \( 1 - 1.28e4iT - 8.87e8T^{2} \) |
| 37 | \( 1 + 6.15e4T + 2.56e9T^{2} \) |
| 41 | \( 1 + 1.10e5iT - 4.75e9T^{2} \) |
| 43 | \( 1 + 1.74e4T + 6.32e9T^{2} \) |
| 47 | \( 1 + 3.06e4iT - 1.07e10T^{2} \) |
| 53 | \( 1 + 6.05e4T + 2.21e10T^{2} \) |
| 59 | \( 1 - 2.15e5iT - 4.21e10T^{2} \) |
| 61 | \( 1 - 1.62e5iT - 5.15e10T^{2} \) |
| 67 | \( 1 + 2.68e5T + 9.04e10T^{2} \) |
| 71 | \( 1 - 1.01e5T + 1.28e11T^{2} \) |
| 73 | \( 1 + 3.17e5iT - 1.51e11T^{2} \) |
| 79 | \( 1 - 3.62e5T + 2.43e11T^{2} \) |
| 83 | \( 1 - 2.16e5iT - 3.26e11T^{2} \) |
| 89 | \( 1 + 1.33e6iT - 4.96e11T^{2} \) |
| 97 | \( 1 - 1.51e6iT - 8.32e11T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.04010621949871852735246434324, −14.00513791113223804225368107722, −11.96354124776651058735061953977, −10.62326965612425487298286265025, −10.15672681276811133704987700446, −8.940711179047486676003580615923, −7.44319370427491552486131129137, −6.50466424085863227894315048370, −3.80103635563573510036716314498, −1.71501057957441228679450528033,
0.61285274376595131798757964622, 1.59674486255865772407358992621, 4.62122566597817528276383066701, 6.74761412627232764767027227554, 8.003749362503105504736183812476, 9.047036786990555317737329427627, 9.809314670971383227725716319706, 11.45994244414498558376313660711, 12.57223016689697799374055282623, 13.67938125732688828552228251766