Properties

Label 2-7e2-1.1-c23-0-40
Degree $2$
Conductor $49$
Sign $-1$
Analytic cond. $164.249$
Root an. cond. $12.8160$
Motivic weight $23$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.51e3·2-s − 3.85e5·3-s − 2.07e6·4-s − 7.20e7·5-s − 9.68e8·6-s − 2.62e10·8-s + 5.43e10·9-s − 1.80e11·10-s + 9.26e11·11-s + 7.97e11·12-s − 5.15e12·13-s + 2.77e13·15-s − 4.87e13·16-s − 2.45e13·17-s + 1.36e14·18-s − 5.32e14·19-s + 1.49e14·20-s + 2.32e15·22-s + 1.17e15·23-s + 1.01e16·24-s − 6.73e15·25-s − 1.29e16·26-s + 1.53e16·27-s + 6.90e16·29-s + 6.97e16·30-s + 2.78e17·31-s + 9.80e16·32-s + ⋯
L(s)  = 1  + 0.867·2-s − 1.25·3-s − 0.246·4-s − 0.659·5-s − 1.08·6-s − 1.08·8-s + 0.577·9-s − 0.572·10-s + 0.979·11-s + 0.310·12-s − 0.798·13-s + 0.828·15-s − 0.692·16-s − 0.173·17-s + 0.501·18-s − 1.04·19-s + 0.162·20-s + 0.849·22-s + 0.257·23-s + 1.35·24-s − 0.565·25-s − 0.692·26-s + 0.530·27-s + 1.05·29-s + 0.718·30-s + 1.96·31-s + 0.481·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(24-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s+23/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(49\)    =    \(7^{2}\)
Sign: $-1$
Analytic conductor: \(164.249\)
Root analytic conductor: \(12.8160\)
Motivic weight: \(23\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 49,\ (\ :23/2),\ -1)\)

Particular Values

\(L(12)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{25}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
good2 \( 1 - 2.51e3T + 8.38e6T^{2} \)
3 \( 1 + 3.85e5T + 9.41e10T^{2} \)
5 \( 1 + 7.20e7T + 1.19e16T^{2} \)
11 \( 1 - 9.26e11T + 8.95e23T^{2} \)
13 \( 1 + 5.15e12T + 4.17e25T^{2} \)
17 \( 1 + 2.45e13T + 1.99e28T^{2} \)
19 \( 1 + 5.32e14T + 2.57e29T^{2} \)
23 \( 1 - 1.17e15T + 2.08e31T^{2} \)
29 \( 1 - 6.90e16T + 4.31e33T^{2} \)
31 \( 1 - 2.78e17T + 2.00e34T^{2} \)
37 \( 1 - 1.43e18T + 1.17e36T^{2} \)
41 \( 1 + 1.70e18T + 1.24e37T^{2} \)
43 \( 1 - 6.33e18T + 3.71e37T^{2} \)
47 \( 1 - 1.35e19T + 2.87e38T^{2} \)
53 \( 1 + 7.01e19T + 4.55e39T^{2} \)
59 \( 1 + 2.39e20T + 5.36e40T^{2} \)
61 \( 1 + 1.37e20T + 1.15e41T^{2} \)
67 \( 1 - 6.78e20T + 9.99e41T^{2} \)
71 \( 1 - 2.14e21T + 3.79e42T^{2} \)
73 \( 1 + 3.07e21T + 7.18e42T^{2} \)
79 \( 1 - 6.81e21T + 4.42e43T^{2} \)
83 \( 1 + 8.36e21T + 1.37e44T^{2} \)
89 \( 1 + 3.41e22T + 6.85e44T^{2} \)
97 \( 1 - 1.21e22T + 4.96e45T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.02469046953240326327632229800, −9.638514940729065200406667173904, −8.296668219731614662042684064793, −6.67743710322053578145398804669, −5.95196249684154952589333865173, −4.67672308715433555895708802778, −4.21483056241733635402268729052, −2.75642999150839468557593487390, −0.883424022329285193597900558143, 0, 0.883424022329285193597900558143, 2.75642999150839468557593487390, 4.21483056241733635402268729052, 4.67672308715433555895708802778, 5.95196249684154952589333865173, 6.67743710322053578145398804669, 8.296668219731614662042684064793, 9.638514940729065200406667173904, 11.02469046953240326327632229800

Graph of the $Z$-function along the critical line