Properties

Label 2-7e2-1.1-c23-0-24
Degree $2$
Conductor $49$
Sign $1$
Analytic cond. $164.249$
Root an. cond. $12.8160$
Motivic weight $23$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 867.·2-s − 3.93e5·3-s − 7.63e6·4-s + 1.46e8·5-s + 3.41e8·6-s + 1.39e10·8-s + 6.03e10·9-s − 1.26e11·10-s − 1.21e12·11-s + 3.00e12·12-s + 9.16e12·13-s − 5.74e13·15-s + 5.19e13·16-s + 5.25e13·17-s − 5.23e13·18-s + 8.24e14·19-s − 1.11e15·20-s + 1.05e15·22-s + 2.00e15·23-s − 5.46e15·24-s + 9.46e15·25-s − 7.95e15·26-s + 1.32e16·27-s + 1.28e16·29-s + 4.98e16·30-s + 2.57e17·31-s − 1.61e17·32-s + ⋯
L(s)  = 1  − 0.299·2-s − 1.28·3-s − 0.910·4-s + 1.33·5-s + 0.383·6-s + 0.572·8-s + 0.641·9-s − 0.401·10-s − 1.27·11-s + 1.16·12-s + 1.41·13-s − 1.71·15-s + 0.738·16-s + 0.371·17-s − 0.192·18-s + 1.62·19-s − 1.21·20-s + 0.383·22-s + 0.439·23-s − 0.733·24-s + 0.794·25-s − 0.425·26-s + 0.459·27-s + 0.195·29-s + 0.514·30-s + 1.82·31-s − 0.793·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(24-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s+23/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(49\)    =    \(7^{2}\)
Sign: $1$
Analytic conductor: \(164.249\)
Root analytic conductor: \(12.8160\)
Motivic weight: \(23\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 49,\ (\ :23/2),\ 1)\)

Particular Values

\(L(12)\) \(\approx\) \(1.367419021\)
\(L(\frac12)\) \(\approx\) \(1.367419021\)
\(L(\frac{25}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
good2 \( 1 + 867.T + 8.38e6T^{2} \)
3 \( 1 + 3.93e5T + 9.41e10T^{2} \)
5 \( 1 - 1.46e8T + 1.19e16T^{2} \)
11 \( 1 + 1.21e12T + 8.95e23T^{2} \)
13 \( 1 - 9.16e12T + 4.17e25T^{2} \)
17 \( 1 - 5.25e13T + 1.99e28T^{2} \)
19 \( 1 - 8.24e14T + 2.57e29T^{2} \)
23 \( 1 - 2.00e15T + 2.08e31T^{2} \)
29 \( 1 - 1.28e16T + 4.31e33T^{2} \)
31 \( 1 - 2.57e17T + 2.00e34T^{2} \)
37 \( 1 - 5.69e16T + 1.17e36T^{2} \)
41 \( 1 - 4.76e17T + 1.24e37T^{2} \)
43 \( 1 + 7.55e17T + 3.71e37T^{2} \)
47 \( 1 - 2.74e19T + 2.87e38T^{2} \)
53 \( 1 + 9.15e19T + 4.55e39T^{2} \)
59 \( 1 + 7.57e19T + 5.36e40T^{2} \)
61 \( 1 + 5.95e20T + 1.15e41T^{2} \)
67 \( 1 + 1.28e21T + 9.99e41T^{2} \)
71 \( 1 + 6.22e20T + 3.79e42T^{2} \)
73 \( 1 - 1.49e21T + 7.18e42T^{2} \)
79 \( 1 - 1.10e22T + 4.42e43T^{2} \)
83 \( 1 - 1.30e22T + 1.37e44T^{2} \)
89 \( 1 + 2.41e21T + 6.85e44T^{2} \)
97 \( 1 + 1.34e22T + 4.96e45T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.83946045260235866832143147037, −10.16979384185040354768775782960, −9.168705663878371316292655845130, −7.86194858382226279215655581180, −6.20084624664325228841175091035, −5.52184648712778346808512397636, −4.77746937652312588453606969392, −3.02207419052949179656959850862, −1.32475184384035710067820703579, −0.66806850681568630023509371472, 0.66806850681568630023509371472, 1.32475184384035710067820703579, 3.02207419052949179656959850862, 4.77746937652312588453606969392, 5.52184648712778346808512397636, 6.20084624664325228841175091035, 7.86194858382226279215655581180, 9.168705663878371316292655845130, 10.16979384185040354768775782960, 10.83946045260235866832143147037

Graph of the $Z$-function along the critical line