L(s) = 1 | + (−1.36 + 0.367i)2-s + (−1.69 − 0.370i)3-s + (1.72 − 1.00i)4-s − i·5-s + (2.44 − 0.116i)6-s − 2.50i·7-s + (−1.99 + 2.00i)8-s + (2.72 + 1.25i)9-s + (0.367 + 1.36i)10-s + 3.25·11-s + (−3.29 + 1.05i)12-s + 13-s + (0.922 + 3.42i)14-s + (−0.370 + 1.69i)15-s + (1.98 − 3.47i)16-s − 2.15i·17-s + ⋯ |
L(s) = 1 | + (−0.965 + 0.260i)2-s + (−0.976 − 0.213i)3-s + (0.864 − 0.502i)4-s − 0.447i·5-s + (0.998 − 0.0475i)6-s − 0.948i·7-s + (−0.704 + 0.709i)8-s + (0.908 + 0.417i)9-s + (0.116 + 0.431i)10-s + 0.979·11-s + (−0.952 + 0.305i)12-s + 0.277·13-s + (0.246 + 0.915i)14-s + (−0.0956 + 0.436i)15-s + (0.495 − 0.868i)16-s − 0.523i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 780 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.305 + 0.952i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 780 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.305 + 0.952i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.582272 - 0.424598i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.582272 - 0.424598i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.36 - 0.367i)T \) |
| 3 | \( 1 + (1.69 + 0.370i)T \) |
| 5 | \( 1 + iT \) |
| 13 | \( 1 - T \) |
good | 7 | \( 1 + 2.50iT - 7T^{2} \) |
| 11 | \( 1 - 3.25T + 11T^{2} \) |
| 17 | \( 1 + 2.15iT - 17T^{2} \) |
| 19 | \( 1 - 4.69iT - 19T^{2} \) |
| 23 | \( 1 - 5.22T + 23T^{2} \) |
| 29 | \( 1 - 0.00443iT - 29T^{2} \) |
| 31 | \( 1 - 1.46iT - 31T^{2} \) |
| 37 | \( 1 - 0.0889T + 37T^{2} \) |
| 41 | \( 1 + 9.34iT - 41T^{2} \) |
| 43 | \( 1 + 2.07iT - 43T^{2} \) |
| 47 | \( 1 + 6.13T + 47T^{2} \) |
| 53 | \( 1 + 6.54iT - 53T^{2} \) |
| 59 | \( 1 - 11.2T + 59T^{2} \) |
| 61 | \( 1 + 1.16T + 61T^{2} \) |
| 67 | \( 1 + 0.0288iT - 67T^{2} \) |
| 71 | \( 1 + 7.72T + 71T^{2} \) |
| 73 | \( 1 - 7.70T + 73T^{2} \) |
| 79 | \( 1 + 14.8iT - 79T^{2} \) |
| 83 | \( 1 - 17.1T + 83T^{2} \) |
| 89 | \( 1 + 17.5iT - 89T^{2} \) |
| 97 | \( 1 + 12.0T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.17602637698719277623675045532, −9.354577146875071366599250924520, −8.423850387286458776516782733030, −7.36787458548382455798068899312, −6.84228889994842139899171219271, −5.92899815638899541249955207275, −4.96142385924413451005232829765, −3.72549160340577633531831553181, −1.66797928838145087076228910208, −0.68319414284163517562291158245,
1.21991629249028814642786175611, 2.68413041522038137360903694288, 3.94300112100383149278749483118, 5.31047270245842970498543286950, 6.43576213791055718366498311110, 6.76295664410223010705097256841, 8.010312849730408989255901960209, 9.093258769583286158628370809330, 9.518701187995290015665358073777, 10.58614067594969554381239567940