L(s) = 1 | + (1.32 − 0.5i)2-s + 1.73i·3-s + (1.50 − 1.32i)4-s − i·5-s + (0.866 + 2.29i)6-s + 4.37i·7-s + (1.32 − 2.50i)8-s − 2.99·9-s + (−0.5 − 1.32i)10-s + 3.46·11-s + (2.29 + 2.59i)12-s + 13-s + (2.18 + 5.79i)14-s + 1.73·15-s + (0.500 − 3.96i)16-s + 1.58i·17-s + ⋯ |
L(s) = 1 | + (0.935 − 0.353i)2-s + 0.999i·3-s + (0.750 − 0.661i)4-s − 0.447i·5-s + (0.353 + 0.935i)6-s + 1.65i·7-s + (0.467 − 0.883i)8-s − 0.999·9-s + (−0.158 − 0.418i)10-s + 1.04·11-s + (0.661 + 0.749i)12-s + 0.277·13-s + (0.585 + 1.54i)14-s + 0.447·15-s + (0.125 − 0.992i)16-s + 0.383i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 780 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.750 - 0.661i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 780 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.750 - 0.661i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.60295 + 0.983824i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.60295 + 0.983824i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.32 + 0.5i)T \) |
| 3 | \( 1 - 1.73iT \) |
| 5 | \( 1 + iT \) |
| 13 | \( 1 - T \) |
good | 7 | \( 1 - 4.37iT - 7T^{2} \) |
| 11 | \( 1 - 3.46T + 11T^{2} \) |
| 17 | \( 1 - 1.58iT - 17T^{2} \) |
| 19 | \( 1 - 4.37iT - 19T^{2} \) |
| 23 | \( 1 - 0.913T + 23T^{2} \) |
| 29 | \( 1 - 5.58iT - 29T^{2} \) |
| 31 | \( 1 + 3.46iT - 31T^{2} \) |
| 37 | \( 1 - 6T + 37T^{2} \) |
| 41 | \( 1 + 9.16iT - 41T^{2} \) |
| 43 | \( 1 - 5.29iT - 43T^{2} \) |
| 47 | \( 1 - 3.46T + 47T^{2} \) |
| 53 | \( 1 + 4iT - 53T^{2} \) |
| 59 | \( 1 + 12.2T + 59T^{2} \) |
| 61 | \( 1 + 9.16T + 61T^{2} \) |
| 67 | \( 1 + 12.2iT - 67T^{2} \) |
| 71 | \( 1 - 3.46T + 71T^{2} \) |
| 73 | \( 1 - 0.417T + 73T^{2} \) |
| 79 | \( 1 + 14.0iT - 79T^{2} \) |
| 83 | \( 1 - 12.2T + 83T^{2} \) |
| 89 | \( 1 - 13.1iT - 89T^{2} \) |
| 97 | \( 1 + 4.41T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.58022029561173118409271113028, −9.415794092550358694474614517517, −9.098122111119033657927814363582, −8.011606091643923470657908336581, −6.30820004598557062692200153925, −5.80216985514763196016229265879, −4.96235589395322468024884967459, −4.00279517505924733572360277240, −3.08676075258837603777303016244, −1.81801294859000014912338439784,
1.17613564049473480581774207999, 2.72383163683644340600145715345, 3.78001532910002469993627521923, 4.69265451722838924654089712544, 6.11145554977769969329658547627, 6.72740112056281355420594666699, 7.32061877947967997402741180626, 8.008998224984630837167700547240, 9.232602811709084767057081184663, 10.57595278096466688849027773487