L(s) = 1 | + (−0.350 + 1.36i)2-s + (−0.604 − 1.62i)3-s + (−1.75 − 0.961i)4-s + i·5-s + (2.43 − 0.258i)6-s − 0.0304i·7-s + (1.93 − 2.06i)8-s + (−2.26 + 1.96i)9-s + (−1.36 − 0.350i)10-s + 1.47·11-s + (−0.500 + 3.42i)12-s − 13-s + (0.0417 + 0.0106i)14-s + (1.62 − 0.604i)15-s + (2.15 + 3.37i)16-s + 1.45i·17-s + ⋯ |
L(s) = 1 | + (−0.248 + 0.968i)2-s + (−0.348 − 0.937i)3-s + (−0.876 − 0.480i)4-s + 0.447i·5-s + (0.994 − 0.105i)6-s − 0.0115i·7-s + (0.683 − 0.730i)8-s + (−0.756 + 0.654i)9-s + (−0.433 − 0.110i)10-s + 0.443·11-s + (−0.144 + 0.989i)12-s − 0.277·13-s + (0.0111 + 0.00285i)14-s + (0.419 − 0.156i)15-s + (0.537 + 0.843i)16-s + 0.352i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 780 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.989 + 0.144i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 780 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.989 + 0.144i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.00681 - 0.0731509i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.00681 - 0.0731509i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.350 - 1.36i)T \) |
| 3 | \( 1 + (0.604 + 1.62i)T \) |
| 5 | \( 1 - iT \) |
| 13 | \( 1 + T \) |
good | 7 | \( 1 + 0.0304iT - 7T^{2} \) |
| 11 | \( 1 - 1.47T + 11T^{2} \) |
| 17 | \( 1 - 1.45iT - 17T^{2} \) |
| 19 | \( 1 + 3.38iT - 19T^{2} \) |
| 23 | \( 1 - 6.40T + 23T^{2} \) |
| 29 | \( 1 + 6.25iT - 29T^{2} \) |
| 31 | \( 1 + 5.55iT - 31T^{2} \) |
| 37 | \( 1 - 6.56T + 37T^{2} \) |
| 41 | \( 1 + 4.02iT - 41T^{2} \) |
| 43 | \( 1 + 10.7iT - 43T^{2} \) |
| 47 | \( 1 + 2.53T + 47T^{2} \) |
| 53 | \( 1 - 7.65iT - 53T^{2} \) |
| 59 | \( 1 - 13.0T + 59T^{2} \) |
| 61 | \( 1 - 13.6T + 61T^{2} \) |
| 67 | \( 1 - 1.73iT - 67T^{2} \) |
| 71 | \( 1 - 3.60T + 71T^{2} \) |
| 73 | \( 1 + 8.38T + 73T^{2} \) |
| 79 | \( 1 + 7.35iT - 79T^{2} \) |
| 83 | \( 1 + 7.24T + 83T^{2} \) |
| 89 | \( 1 - 7.13iT - 89T^{2} \) |
| 97 | \( 1 - 9.19T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.20395954369366910788772396719, −9.184970212657618225996635144283, −8.400796923545329886223012646389, −7.41692111813850708266602127938, −6.94046686143995405905705206552, −6.08265237209154691431308694816, −5.28778519335622554686059647311, −4.06787247046715448532472750898, −2.40386285219779310805848132851, −0.74024920899607882209296479166,
1.11305110924134278968759300960, 2.84791657390984625504008651681, 3.81869129391680494831208084404, 4.77244269850715725912065107462, 5.44466527734464154400167195832, 6.84789823962760394199364382145, 8.193011911166513352435968611984, 8.931119024856113027372767623702, 9.613872138637162840597750548702, 10.26640191015710266715126407649