L(s) = 1 | + (1.13 + 0.844i)2-s + (0.684 + 1.59i)3-s + (0.573 + 1.91i)4-s − i·5-s + (−0.566 + 2.38i)6-s + 1.35i·7-s + (−0.968 + 2.65i)8-s + (−2.06 + 2.17i)9-s + (0.844 − 1.13i)10-s + 5.65·11-s + (−2.65 + 2.22i)12-s − 13-s + (−1.14 + 1.54i)14-s + (1.59 − 0.684i)15-s + (−3.34 + 2.19i)16-s + 4.77i·17-s + ⋯ |
L(s) = 1 | + (0.802 + 0.597i)2-s + (0.395 + 0.918i)3-s + (0.286 + 0.958i)4-s − 0.447i·5-s + (−0.231 + 0.972i)6-s + 0.513i·7-s + (−0.342 + 0.939i)8-s + (−0.687 + 0.726i)9-s + (0.267 − 0.358i)10-s + 1.70·11-s + (−0.766 + 0.642i)12-s − 0.277·13-s + (−0.306 + 0.412i)14-s + (0.410 − 0.176i)15-s + (−0.835 + 0.549i)16-s + 1.15i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 780 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.642 - 0.766i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 780 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.642 - 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.15625 + 2.47650i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.15625 + 2.47650i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.13 - 0.844i)T \) |
| 3 | \( 1 + (-0.684 - 1.59i)T \) |
| 5 | \( 1 + iT \) |
| 13 | \( 1 + T \) |
good | 7 | \( 1 - 1.35iT - 7T^{2} \) |
| 11 | \( 1 - 5.65T + 11T^{2} \) |
| 17 | \( 1 - 4.77iT - 17T^{2} \) |
| 19 | \( 1 + 8.29iT - 19T^{2} \) |
| 23 | \( 1 + 3.30T + 23T^{2} \) |
| 29 | \( 1 + 3.90iT - 29T^{2} \) |
| 31 | \( 1 - 8.19iT - 31T^{2} \) |
| 37 | \( 1 - 3.51T + 37T^{2} \) |
| 41 | \( 1 - 1.39iT - 41T^{2} \) |
| 43 | \( 1 + 10.0iT - 43T^{2} \) |
| 47 | \( 1 + 6.45T + 47T^{2} \) |
| 53 | \( 1 - 4.68iT - 53T^{2} \) |
| 59 | \( 1 - 13.6T + 59T^{2} \) |
| 61 | \( 1 - 0.137T + 61T^{2} \) |
| 67 | \( 1 + 5.90iT - 67T^{2} \) |
| 71 | \( 1 - 12.2T + 71T^{2} \) |
| 73 | \( 1 + 3.48T + 73T^{2} \) |
| 79 | \( 1 + 12.9iT - 79T^{2} \) |
| 83 | \( 1 - 6.73T + 83T^{2} \) |
| 89 | \( 1 + 1.70iT - 89T^{2} \) |
| 97 | \( 1 - 1.74T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.68711618382327379873288243045, −9.430202584497101194991929538717, −8.854029863807688901958677476112, −8.235331335879615098357696728353, −6.95606693538876471880870977642, −6.08966381026602130914157902810, −5.10032485979140406512849680596, −4.29249538928856672455616725073, −3.53033574475779166429626189656, −2.23020571462401614209020403271,
1.10809185948874019068740490621, 2.21902239137589094423544733509, 3.46903929150607609263282103501, 4.13964810381422813119912063599, 5.68949429527635437913898849968, 6.48780549154848123395039478833, 7.14215486538311207691363651581, 8.142236257826457526149262078859, 9.478610773481283124001654738374, 9.895792156184707047529072124209