L(s) = 1 | + (1.38 + 0.261i)2-s + (−1.60 + 0.646i)3-s + (1.86 + 0.727i)4-s + i·5-s + (−2.40 + 0.478i)6-s + 1.32i·7-s + (2.39 + 1.49i)8-s + (2.16 − 2.07i)9-s + (−0.261 + 1.38i)10-s + 2.61·11-s + (−3.46 + 0.0366i)12-s + 13-s + (−0.346 + 1.83i)14-s + (−0.646 − 1.60i)15-s + (2.94 + 2.71i)16-s − 2.53i·17-s + ⋯ |
L(s) = 1 | + (0.982 + 0.185i)2-s + (−0.927 + 0.373i)3-s + (0.931 + 0.363i)4-s + 0.447i·5-s + (−0.980 + 0.195i)6-s + 0.499i·7-s + (0.848 + 0.529i)8-s + (0.720 − 0.692i)9-s + (−0.0827 + 0.439i)10-s + 0.788·11-s + (−0.999 + 0.0105i)12-s + 0.277·13-s + (−0.0924 + 0.491i)14-s + (−0.167 − 0.414i)15-s + (0.735 + 0.677i)16-s − 0.616i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 780 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0105 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 780 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0105 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.54238 + 1.55880i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.54238 + 1.55880i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.38 - 0.261i)T \) |
| 3 | \( 1 + (1.60 - 0.646i)T \) |
| 5 | \( 1 - iT \) |
| 13 | \( 1 - T \) |
good | 7 | \( 1 - 1.32iT - 7T^{2} \) |
| 11 | \( 1 - 2.61T + 11T^{2} \) |
| 17 | \( 1 + 2.53iT - 17T^{2} \) |
| 19 | \( 1 - 5.65iT - 19T^{2} \) |
| 23 | \( 1 + 9.33T + 23T^{2} \) |
| 29 | \( 1 - 4.17iT - 29T^{2} \) |
| 31 | \( 1 - 8.89iT - 31T^{2} \) |
| 37 | \( 1 - 5.76T + 37T^{2} \) |
| 41 | \( 1 + 0.238iT - 41T^{2} \) |
| 43 | \( 1 + 8.77iT - 43T^{2} \) |
| 47 | \( 1 - 1.43T + 47T^{2} \) |
| 53 | \( 1 + 7.39iT - 53T^{2} \) |
| 59 | \( 1 - 9.74T + 59T^{2} \) |
| 61 | \( 1 + 7.37T + 61T^{2} \) |
| 67 | \( 1 + 10.9iT - 67T^{2} \) |
| 71 | \( 1 + 4.35T + 71T^{2} \) |
| 73 | \( 1 + 2.82T + 73T^{2} \) |
| 79 | \( 1 + 7.31iT - 79T^{2} \) |
| 83 | \( 1 + 1.29T + 83T^{2} \) |
| 89 | \( 1 + 2.18iT - 89T^{2} \) |
| 97 | \( 1 - 13.6T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.60978442036901145520782040692, −10.04284647004937062741553282500, −8.810624504639486174468477788799, −7.61343774791276929317717822590, −6.65752959349652777751572278918, −6.01632378246644509042322079858, −5.28700110856841799073833862682, −4.15585756833684923860986699258, −3.40290030936277731190639258945, −1.79899848589031932738246344658,
0.962480900950305706591038626531, 2.25203018094146445694493613820, 4.08604894007251606648446181538, 4.43421780595354804556457863452, 5.82399543263912043030475906118, 6.20733509845031767730980266334, 7.24339386443315202553495294523, 8.060713999178461475367529039246, 9.556031856575321969160193592213, 10.32810567316869751120972471791