L(s) = 1 | + (−0.177 + 1.40i)2-s + (0.0510 − 1.73i)3-s + (−1.93 − 0.499i)4-s − i·5-s + (2.41 + 0.379i)6-s + 4.12i·7-s + (1.04 − 2.62i)8-s + (−2.99 − 0.176i)9-s + (1.40 + 0.177i)10-s − 1.68·11-s + (−0.962 + 3.32i)12-s − 13-s + (−5.78 − 0.733i)14-s + (−1.73 − 0.0510i)15-s + (3.50 + 1.93i)16-s − 2.57i·17-s + ⋯ |
L(s) = 1 | + (−0.125 + 0.992i)2-s + (0.0294 − 0.999i)3-s + (−0.968 − 0.249i)4-s − 0.447i·5-s + (0.987 + 0.154i)6-s + 1.55i·7-s + (0.369 − 0.929i)8-s + (−0.998 − 0.0588i)9-s + (0.443 + 0.0562i)10-s − 0.507·11-s + (−0.277 + 0.960i)12-s − 0.277·13-s + (−1.54 − 0.196i)14-s + (−0.447 − 0.0131i)15-s + (0.875 + 0.483i)16-s − 0.623i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 780 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.960 - 0.277i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 780 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.960 - 0.277i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0617850 + 0.435881i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0617850 + 0.435881i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.177 - 1.40i)T \) |
| 3 | \( 1 + (-0.0510 + 1.73i)T \) |
| 5 | \( 1 + iT \) |
| 13 | \( 1 + T \) |
good | 7 | \( 1 - 4.12iT - 7T^{2} \) |
| 11 | \( 1 + 1.68T + 11T^{2} \) |
| 17 | \( 1 + 2.57iT - 17T^{2} \) |
| 19 | \( 1 - 1.95iT - 19T^{2} \) |
| 23 | \( 1 + 6.44T + 23T^{2} \) |
| 29 | \( 1 - 5.70iT - 29T^{2} \) |
| 31 | \( 1 - 8.50iT - 31T^{2} \) |
| 37 | \( 1 + 4.19T + 37T^{2} \) |
| 41 | \( 1 + 8.18iT - 41T^{2} \) |
| 43 | \( 1 - 7.55iT - 43T^{2} \) |
| 47 | \( 1 + 7.23T + 47T^{2} \) |
| 53 | \( 1 - 12.1iT - 53T^{2} \) |
| 59 | \( 1 + 0.569T + 59T^{2} \) |
| 61 | \( 1 + 12.6T + 61T^{2} \) |
| 67 | \( 1 - 3.82iT - 67T^{2} \) |
| 71 | \( 1 - 6.38T + 71T^{2} \) |
| 73 | \( 1 - 4.41T + 73T^{2} \) |
| 79 | \( 1 + 3.60iT - 79T^{2} \) |
| 83 | \( 1 - 4.05T + 83T^{2} \) |
| 89 | \( 1 + 18.1iT - 89T^{2} \) |
| 97 | \( 1 - 11.9T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.55041529867353496753309027561, −9.367038325885222868246354379746, −8.755588030018829785118438485637, −8.110274468080667032603661623485, −7.29927209544204949104669687271, −6.27484388282609503043117595471, −5.57772992519594116285245871956, −4.89147711739303839040327271715, −3.09766591367164330908547056411, −1.71918122806909954306082454356,
0.22339685956145705342667318968, 2.23582303330831837700762166571, 3.52816530402995424100685882869, 4.10250473470743530252540783365, 4.99558605322767427163494833298, 6.27391759115236759592363482535, 7.70838652767342086495400112123, 8.243812853682451887529082704336, 9.642356479955066049132085031683, 9.966165880171784735782752763941