L(s) = 1 | + 1.41i·2-s + (−1.68 − 0.382i)3-s − 2.00·4-s + i·5-s + (0.541 − 2.38i)6-s + 3.69i·7-s − 2.82i·8-s + (2.70 + 1.29i)9-s − 1.41·10-s − 4.01·11-s + (3.37 + 0.765i)12-s + 13-s − 5.22·14-s + (0.382 − 1.68i)15-s + 4.00·16-s + 4.82i·17-s + ⋯ |
L(s) = 1 | + 0.999i·2-s + (−0.975 − 0.220i)3-s − 1.00·4-s + 0.447i·5-s + (0.220 − 0.975i)6-s + 1.39i·7-s − 1.00i·8-s + (0.902 + 0.430i)9-s − 0.447·10-s − 1.20·11-s + (0.975 + 0.220i)12-s + 0.277·13-s − 1.39·14-s + (0.0988 − 0.436i)15-s + 1.00·16-s + 1.17i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 780 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.220 + 0.975i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 780 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.220 + 0.975i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.149069 - 0.186617i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.149069 - 0.186617i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - 1.41iT \) |
| 3 | \( 1 + (1.68 + 0.382i)T \) |
| 5 | \( 1 - iT \) |
| 13 | \( 1 - T \) |
good | 7 | \( 1 - 3.69iT - 7T^{2} \) |
| 11 | \( 1 + 4.01T + 11T^{2} \) |
| 17 | \( 1 - 4.82iT - 17T^{2} \) |
| 19 | \( 1 - 0.317iT - 19T^{2} \) |
| 23 | \( 1 + 4.46T + 23T^{2} \) |
| 29 | \( 1 + 0.242iT - 29T^{2} \) |
| 31 | \( 1 + 5.99iT - 31T^{2} \) |
| 37 | \( 1 + 5.41T + 37T^{2} \) |
| 41 | \( 1 + 8.82iT - 41T^{2} \) |
| 43 | \( 1 + 3.37iT - 43T^{2} \) |
| 47 | \( 1 - 8.92T + 47T^{2} \) |
| 53 | \( 1 + 10iT - 53T^{2} \) |
| 59 | \( 1 + 9.68T + 59T^{2} \) |
| 61 | \( 1 + 9.89T + 61T^{2} \) |
| 67 | \( 1 - 4.32iT - 67T^{2} \) |
| 71 | \( 1 + 8.79T + 71T^{2} \) |
| 73 | \( 1 - 9.41T + 73T^{2} \) |
| 79 | \( 1 + 0.634iT - 79T^{2} \) |
| 83 | \( 1 + 2.42T + 83T^{2} \) |
| 89 | \( 1 + 0.343iT - 89T^{2} \) |
| 97 | \( 1 + 5.65T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.69942692647543300902049032064, −10.15953000187573019302254123750, −9.029685409781647522082124615640, −8.136663664092106595699760516426, −7.42663465935971349457310714333, −6.26668156079741661108269804706, −5.80277835578250252594093060803, −5.12147807566294332333818479782, −3.84940420722370650684332455313, −2.15120110335931636352653741089,
0.14605510976318197933286285618, 1.33596186247038664452295112721, 3.10784593284420447161654002342, 4.32447624553103532785563869782, 4.85578397481395936836071841391, 5.84452689277984456326157914123, 7.19550091209134941661773590152, 7.975773332920841653363428693065, 9.216761165989526966609542549803, 10.05370108593948913404932049314