L(s) = 1 | + (0.866 − 0.5i)3-s + (−0.5 − 0.866i)4-s − i·5-s + (0.5 + 0.866i)7-s + (0.499 − 0.866i)9-s + (0.866 + 0.5i)11-s + (−0.866 − 0.499i)12-s + (−0.5 + 0.866i)13-s + (−0.5 − 0.866i)15-s + (−0.499 + 0.866i)16-s − i·17-s − 19-s + (−0.866 + 0.5i)20-s + (0.866 + 0.499i)21-s + (−0.866 + 0.5i)23-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)3-s + (−0.5 − 0.866i)4-s − i·5-s + (0.5 + 0.866i)7-s + (0.499 − 0.866i)9-s + (0.866 + 0.5i)11-s + (−0.866 − 0.499i)12-s + (−0.5 + 0.866i)13-s + (−0.5 − 0.866i)15-s + (−0.499 + 0.866i)16-s − i·17-s − 19-s + (−0.866 + 0.5i)20-s + (0.866 + 0.499i)21-s + (−0.866 + 0.5i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 777 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.308 + 0.951i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 777 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.308 + 0.951i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.193089573\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.193089573\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.866 + 0.5i)T \) |
| 7 | \( 1 + (-0.5 - 0.866i)T \) |
| 37 | \( 1 + (0.5 - 0.866i)T \) |
good | 2 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 + iT - T^{2} \) |
| 11 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + iT - T^{2} \) |
| 19 | \( 1 + T + T^{2} \) |
| 23 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + 2iT - T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 - iT - T^{2} \) |
| 59 | \( 1 - iT - T^{2} \) |
| 61 | \( 1 - T + T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 - T + T^{2} \) |
| 83 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.814507121800157929062062655180, −9.396120436087311194012884290123, −8.778329035743729947014642620780, −8.061887194566809577099452238082, −6.83944522431213588561024866733, −5.93612941703571267395545897992, −4.76106850912257751093378117841, −4.20354994606331893837615658952, −2.30256241384155093179851325914, −1.42568867514748221169517782317,
2.23493420133551506232438919887, 3.58546879383177297700089851918, 3.82460172966955993103133495167, 5.03714751571381716756015763228, 6.61475763971654735481094605609, 7.43312080704445551455470757173, 8.207228390529592382510824498875, 8.787761744066372904461225669273, 9.886565742833348513967088940467, 10.65294210123054719488750450042