Properties

Label 2-7742-1.1-c1-0-220
Degree $2$
Conductor $7742$
Sign $1$
Analytic cond. $61.8201$
Root an. cond. $7.86258$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3·3-s + 4-s + 3·5-s + 3·6-s + 8-s + 6·9-s + 3·10-s − 2·11-s + 3·12-s + 5·13-s + 9·15-s + 16-s − 6·17-s + 6·18-s + 3·20-s − 2·22-s − 2·23-s + 3·24-s + 4·25-s + 5·26-s + 9·27-s + 6·29-s + 9·30-s + 10·31-s + 32-s − 6·33-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.73·3-s + 1/2·4-s + 1.34·5-s + 1.22·6-s + 0.353·8-s + 2·9-s + 0.948·10-s − 0.603·11-s + 0.866·12-s + 1.38·13-s + 2.32·15-s + 1/4·16-s − 1.45·17-s + 1.41·18-s + 0.670·20-s − 0.426·22-s − 0.417·23-s + 0.612·24-s + 4/5·25-s + 0.980·26-s + 1.73·27-s + 1.11·29-s + 1.64·30-s + 1.79·31-s + 0.176·32-s − 1.04·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7742 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7742 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7742\)    =    \(2 \cdot 7^{2} \cdot 79\)
Sign: $1$
Analytic conductor: \(61.8201\)
Root analytic conductor: \(7.86258\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7742,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(8.585680399\)
\(L(\frac12)\) \(\approx\) \(8.585680399\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
7 \( 1 \)
79 \( 1 - T \)
good3 \( 1 - p T + p T^{2} \) 1.3.ad
5 \( 1 - 3 T + p T^{2} \) 1.5.ad
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 - T + p T^{2} \) 1.59.ab
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 - 7 T + p T^{2} \) 1.89.ah
97 \( 1 - 11 T + p T^{2} \) 1.97.al
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.070627514425637178769125667667, −7.07716538698492996638658348794, −6.40634269350498332600322286103, −5.92498931196028374705526801624, −4.81762213986314591291099727820, −4.27825726597095235309150644259, −3.30258915419233219227704864492, −2.74539003178494066035862077804, −2.05403971801931958763833773416, −1.40530407403610158669497387516, 1.40530407403610158669497387516, 2.05403971801931958763833773416, 2.74539003178494066035862077804, 3.30258915419233219227704864492, 4.27825726597095235309150644259, 4.81762213986314591291099727820, 5.92498931196028374705526801624, 6.40634269350498332600322286103, 7.07716538698492996638658348794, 8.070627514425637178769125667667

Graph of the $Z$-function along the critical line