Properties

Label 2-77-1.1-c1-0-1
Degree $2$
Conductor $77$
Sign $1$
Analytic cond. $0.614848$
Root an. cond. $0.784122$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·4-s + 3·5-s + 7-s − 2·9-s − 11-s − 2·12-s − 4·13-s + 3·15-s + 4·16-s − 6·17-s + 2·19-s − 6·20-s + 21-s + 3·23-s + 4·25-s − 5·27-s − 2·28-s − 6·29-s + 5·31-s − 33-s + 3·35-s + 4·36-s + 11·37-s − 4·39-s + 6·41-s + 8·43-s + ⋯
L(s)  = 1  + 0.577·3-s − 4-s + 1.34·5-s + 0.377·7-s − 2/3·9-s − 0.301·11-s − 0.577·12-s − 1.10·13-s + 0.774·15-s + 16-s − 1.45·17-s + 0.458·19-s − 1.34·20-s + 0.218·21-s + 0.625·23-s + 4/5·25-s − 0.962·27-s − 0.377·28-s − 1.11·29-s + 0.898·31-s − 0.174·33-s + 0.507·35-s + 2/3·36-s + 1.80·37-s − 0.640·39-s + 0.937·41-s + 1.21·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 77 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 77 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(77\)    =    \(7 \cdot 11\)
Sign: $1$
Analytic conductor: \(0.614848\)
Root analytic conductor: \(0.784122\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 77,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.032606710\)
\(L(\frac12)\) \(\approx\) \(1.032606710\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 - T \)
11 \( 1 + T \)
good2 \( 1 + p T^{2} \)
3 \( 1 - T + p T^{2} \)
5 \( 1 - 3 T + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 - 3 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 - 5 T + p T^{2} \)
37 \( 1 - 11 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + 9 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 - 5 T + p T^{2} \)
71 \( 1 - 9 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 + 10 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 + 3 T + p T^{2} \)
97 \( 1 + T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.24843777324878748577425819366, −13.60450574831141336956421481732, −12.75123359214433885650815349898, −11.03928612573383528826645274943, −9.594904136117515823873522897188, −9.121939609810073781754575230776, −7.79543673470654027074280114997, −5.89237731397243587720148634695, −4.69940224529243356978622440045, −2.52489627324288051568453078479, 2.52489627324288051568453078479, 4.69940224529243356978622440045, 5.89237731397243587720148634695, 7.79543673470654027074280114997, 9.121939609810073781754575230776, 9.594904136117515823873522897188, 11.03928612573383528826645274943, 12.75123359214433885650815349898, 13.60450574831141336956421481732, 14.24843777324878748577425819366

Graph of the $Z$-function along the critical line