L(s) = 1 | + 3-s − 2·4-s + 3·5-s + 7-s − 2·9-s − 11-s − 2·12-s − 4·13-s + 3·15-s + 4·16-s − 6·17-s + 2·19-s − 6·20-s + 21-s + 3·23-s + 4·25-s − 5·27-s − 2·28-s − 6·29-s + 5·31-s − 33-s + 3·35-s + 4·36-s + 11·37-s − 4·39-s + 6·41-s + 8·43-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 4-s + 1.34·5-s + 0.377·7-s − 2/3·9-s − 0.301·11-s − 0.577·12-s − 1.10·13-s + 0.774·15-s + 16-s − 1.45·17-s + 0.458·19-s − 1.34·20-s + 0.218·21-s + 0.625·23-s + 4/5·25-s − 0.962·27-s − 0.377·28-s − 1.11·29-s + 0.898·31-s − 0.174·33-s + 0.507·35-s + 2/3·36-s + 1.80·37-s − 0.640·39-s + 0.937·41-s + 1.21·43-s + ⋯ |
Λ(s)=(=(77s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(77s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.032606710 |
L(21) |
≈ |
1.032606710 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1−T |
| 11 | 1+T |
good | 2 | 1+pT2 |
| 3 | 1−T+pT2 |
| 5 | 1−3T+pT2 |
| 13 | 1+4T+pT2 |
| 17 | 1+6T+pT2 |
| 19 | 1−2T+pT2 |
| 23 | 1−3T+pT2 |
| 29 | 1+6T+pT2 |
| 31 | 1−5T+pT2 |
| 37 | 1−11T+pT2 |
| 41 | 1−6T+pT2 |
| 43 | 1−8T+pT2 |
| 47 | 1+pT2 |
| 53 | 1+6T+pT2 |
| 59 | 1+9T+pT2 |
| 61 | 1+10T+pT2 |
| 67 | 1−5T+pT2 |
| 71 | 1−9T+pT2 |
| 73 | 1−2T+pT2 |
| 79 | 1+10T+pT2 |
| 83 | 1−12T+pT2 |
| 89 | 1+3T+pT2 |
| 97 | 1+T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.24843777324878748577425819366, −13.60450574831141336956421481732, −12.75123359214433885650815349898, −11.03928612573383528826645274943, −9.594904136117515823873522897188, −9.121939609810073781754575230776, −7.79543673470654027074280114997, −5.89237731397243587720148634695, −4.69940224529243356978622440045, −2.52489627324288051568453078479,
2.52489627324288051568453078479, 4.69940224529243356978622440045, 5.89237731397243587720148634695, 7.79543673470654027074280114997, 9.121939609810073781754575230776, 9.594904136117515823873522897188, 11.03928612573383528826645274943, 12.75123359214433885650815349898, 13.60450574831141336956421481732, 14.24843777324878748577425819366