Properties

Label 77.b
Number of curves $3$
Conductor $77$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 77.b have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(7\)\(1 - T\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T^{2}\) 1.2.a
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 77.b do not have complex multiplication.

Modular form 77.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{4} + 3 q^{5} + q^{7} - 2 q^{9} - q^{11} - 2 q^{12} - 4 q^{13} + 3 q^{15} + 4 q^{16} - 6 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 77.b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
77.b1 77b3 \([0, 1, 1, -89, 295]\) \(-78843215872/539\) \(-539\) \([3]\) \(60\) \(-0.29500\)  
77.b2 77b1 \([0, 1, 1, -49, 600]\) \(-13278380032/156590819\) \(-156590819\) \([3]\) \(20\) \(0.25431\) \(\Gamma_0(N)\)-optimal
77.b3 77b2 \([0, 1, 1, 441, -15815]\) \(9463555063808/115539436859\) \(-115539436859\) \([]\) \(60\) \(0.80361\)