| L(s) = 1 | + (6.73 + 11.6i)5-s + (9.49 + 15.9i)7-s + (−3.36 − 1.94i)11-s − 22.9i·13-s + (57.1 − 99.0i)17-s + (112. − 64.8i)19-s + (145. − 83.8i)23-s + (−28.3 + 49.0i)25-s + 111. i·29-s + (13.4 + 7.76i)31-s + (−121. + 218. i)35-s + (166. + 289. i)37-s + 289.·41-s − 38.3·43-s + (−137. − 238. i)47-s + ⋯ |
| L(s) = 1 | + (0.602 + 1.04i)5-s + (0.512 + 0.858i)7-s + (−0.0921 − 0.0531i)11-s − 0.489i·13-s + (0.815 − 1.41i)17-s + (1.35 − 0.783i)19-s + (1.31 − 0.760i)23-s + (−0.226 + 0.392i)25-s + 0.717i·29-s + (0.0778 + 0.0449i)31-s + (−0.587 + 1.05i)35-s + (0.741 + 1.28i)37-s + 1.10·41-s − 0.136·43-s + (−0.426 − 0.738i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.786 - 0.617i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.786 - 0.617i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(2.734722184\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.734722184\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-9.49 - 15.9i)T \) |
| good | 5 | \( 1 + (-6.73 - 11.6i)T + (-62.5 + 108. i)T^{2} \) |
| 11 | \( 1 + (3.36 + 1.94i)T + (665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + 22.9iT - 2.19e3T^{2} \) |
| 17 | \( 1 + (-57.1 + 99.0i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-112. + 64.8i)T + (3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-145. + 83.8i)T + (6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 - 111. iT - 2.43e4T^{2} \) |
| 31 | \( 1 + (-13.4 - 7.76i)T + (1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (-166. - 289. i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 - 289.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 38.3T + 7.95e4T^{2} \) |
| 47 | \( 1 + (137. + 238. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (542. + 313. i)T + (7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (232. - 402. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-142. + 81.9i)T + (1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (11.3 - 19.5i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 - 740. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + (-846. - 488. i)T + (1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-463. - 803. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + 1.15e3T + 5.71e5T^{2} \) |
| 89 | \( 1 + (554. + 960. i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 - 1.07e3iT - 9.12e5T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.919707667328177840383027167784, −9.373704804591926980146956348088, −8.324521485671727919631978137250, −7.32686331890499978954361675693, −6.61452154168961561887572183437, −5.46999927281753117610185357327, −4.92703350073728394855115381953, −2.98439370567380480144968305643, −2.71766902783569195964711924581, −1.04974370035105505384419780835,
1.00037843553957202225578148291, 1.67278439189409602414652058132, 3.43984885982983091226534922156, 4.46607503611946287079470250484, 5.35129626406816317406593127864, 6.15364620723520966536320407336, 7.53402100656281103467322563762, 7.993932366564581097717184038949, 9.205956187928528910496890203763, 9.677415253238591983155074883084