# Properties

 Label 2-75-15.2-c1-0-2 Degree $2$ Conductor $75$ Sign $0.991 + 0.130i$ Analytic cond. $0.598878$ Root an. cond. $0.773872$ Motivic weight $1$ Arithmetic yes Rational no Primitive yes Self-dual no Analytic rank $0$

# Learn more

## Dirichlet series

 L(s)  = 1 + (1.22 − 1.22i)3-s + 2i·4-s + (−1.22 − 1.22i)7-s − 2.99i·9-s + (2.44 + 2.44i)12-s + (−3.67 + 3.67i)13-s − 4·16-s − i·19-s − 2.99·21-s + (−3.67 − 3.67i)27-s + (2.44 − 2.44i)28-s + 7·31-s + 5.99·36-s + (4.89 + 4.89i)37-s + 9i·39-s + ⋯
 L(s)  = 1 + (0.707 − 0.707i)3-s + i·4-s + (−0.462 − 0.462i)7-s − 0.999i·9-s + (0.707 + 0.707i)12-s + (−1.01 + 1.01i)13-s − 16-s − 0.229i·19-s − 0.654·21-s + (−0.707 − 0.707i)27-s + (0.462 − 0.462i)28-s + 1.25·31-s + 0.999·36-s + (0.805 + 0.805i)37-s + 1.44i·39-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 + 0.130i)\, \overline{\Lambda}(2-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.991 + 0.130i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$75$$    =    $$3 \cdot 5^{2}$$ Sign: $0.991 + 0.130i$ Analytic conductor: $$0.598878$$ Root analytic conductor: $$0.773872$$ Motivic weight: $$1$$ Rational: no Arithmetic: yes Character: $\chi_{75} (32, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 75,\ (\ :1/2),\ 0.991 + 0.130i)$$

## Particular Values

 $$L(1)$$ $$\approx$$ $$1.05671 - 0.0693911i$$ $$L(\frac12)$$ $$\approx$$ $$1.05671 - 0.0693911i$$ $$L(\frac{3}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad3 $$1 + (-1.22 + 1.22i)T$$
5 $$1$$
good2 $$1 - 2iT^{2}$$
7 $$1 + (1.22 + 1.22i)T + 7iT^{2}$$
11 $$1 - 11T^{2}$$
13 $$1 + (3.67 - 3.67i)T - 13iT^{2}$$
17 $$1 - 17iT^{2}$$
19 $$1 + iT - 19T^{2}$$
23 $$1 + 23iT^{2}$$
29 $$1 + 29T^{2}$$
31 $$1 - 7T + 31T^{2}$$
37 $$1 + (-4.89 - 4.89i)T + 37iT^{2}$$
41 $$1 - 41T^{2}$$
43 $$1 + (-8.57 + 8.57i)T - 43iT^{2}$$
47 $$1 - 47iT^{2}$$
53 $$1 + 53iT^{2}$$
59 $$1 + 59T^{2}$$
61 $$1 + 13T + 61T^{2}$$
67 $$1 + (-11.0 - 11.0i)T + 67iT^{2}$$
71 $$1 - 71T^{2}$$
73 $$1 + (9.79 - 9.79i)T - 73iT^{2}$$
79 $$1 - 4iT - 79T^{2}$$
83 $$1 + 83iT^{2}$$
89 $$1 + 89T^{2}$$
97 $$1 + (13.4 + 13.4i)T + 97iT^{2}$$
show more
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−14.23187670196270868084606180817, −13.42674561746704285545492029157, −12.47035729593010947378529045910, −11.63542954061299969780224300316, −9.772617469579423903268941548710, −8.681011624422328193694113894818, −7.49437130344566530573441106044, −6.68718685796925635333848569441, −4.17428157854659057736214700116, −2.65308386127335085338012855862, 2.70868322794637484948616079394, 4.70269006944242844820140091690, 5.96228250188154202928945484523, 7.77393031490225384892523888350, 9.231432884730583854010018457341, 9.952799119937312366033459277162, 10.91716168672346151599909082160, 12.52315760176480942592360239562, 13.77886842050910813597116665974, 14.75852285607938505228108889738