L(s) = 1 | + (1.22 + 1.22i)3-s − 2i·4-s + (−1.22 + 1.22i)7-s + 2.99i·9-s + (2.44 − 2.44i)12-s + (−3.67 − 3.67i)13-s − 4·16-s + i·19-s − 2.99·21-s + (−3.67 + 3.67i)27-s + (2.44 + 2.44i)28-s + 7·31-s + 5.99·36-s + (4.89 − 4.89i)37-s − 9i·39-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)3-s − i·4-s + (−0.462 + 0.462i)7-s + 0.999i·9-s + (0.707 − 0.707i)12-s + (−1.01 − 1.01i)13-s − 16-s + 0.229i·19-s − 0.654·21-s + (−0.707 + 0.707i)27-s + (0.462 + 0.462i)28-s + 1.25·31-s + 0.999·36-s + (0.805 − 0.805i)37-s − 1.44i·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 - 0.130i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.991 - 0.130i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.05671 + 0.0693911i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.05671 + 0.0693911i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.22 - 1.22i)T \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + 2iT^{2} \) |
| 7 | \( 1 + (1.22 - 1.22i)T - 7iT^{2} \) |
| 11 | \( 1 - 11T^{2} \) |
| 13 | \( 1 + (3.67 + 3.67i)T + 13iT^{2} \) |
| 17 | \( 1 + 17iT^{2} \) |
| 19 | \( 1 - iT - 19T^{2} \) |
| 23 | \( 1 - 23iT^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 - 7T + 31T^{2} \) |
| 37 | \( 1 + (-4.89 + 4.89i)T - 37iT^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 + (-8.57 - 8.57i)T + 43iT^{2} \) |
| 47 | \( 1 + 47iT^{2} \) |
| 53 | \( 1 - 53iT^{2} \) |
| 59 | \( 1 + 59T^{2} \) |
| 61 | \( 1 + 13T + 61T^{2} \) |
| 67 | \( 1 + (-11.0 + 11.0i)T - 67iT^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 + (9.79 + 9.79i)T + 73iT^{2} \) |
| 79 | \( 1 + 4iT - 79T^{2} \) |
| 83 | \( 1 - 83iT^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 + (13.4 - 13.4i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.75852285607938505228108889738, −13.77886842050910813597116665974, −12.52315760176480942592360239562, −10.91716168672346151599909082160, −9.952799119937312366033459277162, −9.231432884730583854010018457341, −7.77393031490225384892523888350, −5.96228250188154202928945484523, −4.70269006944242844820140091690, −2.70868322794637484948616079394,
2.65308386127335085338012855862, 4.17428157854659057736214700116, 6.68718685796925635333848569441, 7.49437130344566530573441106044, 8.681011624422328193694113894818, 9.772617469579423903268941548710, 11.63542954061299969780224300316, 12.47035729593010947378529045910, 13.42674561746704285545492029157, 14.23187670196270868084606180817