Properties

Label 2-75-15.8-c1-0-1
Degree $2$
Conductor $75$
Sign $0.991 - 0.130i$
Analytic cond. $0.598878$
Root an. cond. $0.773872$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.22 + 1.22i)3-s − 2i·4-s + (−1.22 + 1.22i)7-s + 2.99i·9-s + (2.44 − 2.44i)12-s + (−3.67 − 3.67i)13-s − 4·16-s + i·19-s − 2.99·21-s + (−3.67 + 3.67i)27-s + (2.44 + 2.44i)28-s + 7·31-s + 5.99·36-s + (4.89 − 4.89i)37-s − 9i·39-s + ⋯
L(s)  = 1  + (0.707 + 0.707i)3-s i·4-s + (−0.462 + 0.462i)7-s + 0.999i·9-s + (0.707 − 0.707i)12-s + (−1.01 − 1.01i)13-s − 16-s + 0.229i·19-s − 0.654·21-s + (−0.707 + 0.707i)27-s + (0.462 + 0.462i)28-s + 1.25·31-s + 0.999·36-s + (0.805 − 0.805i)37-s − 1.44i·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 - 0.130i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.991 - 0.130i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(75\)    =    \(3 \cdot 5^{2}\)
Sign: $0.991 - 0.130i$
Analytic conductor: \(0.598878\)
Root analytic conductor: \(0.773872\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{75} (68, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 75,\ (\ :1/2),\ 0.991 - 0.130i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.05671 + 0.0693911i\)
\(L(\frac12)\) \(\approx\) \(1.05671 + 0.0693911i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-1.22 - 1.22i)T \)
5 \( 1 \)
good2 \( 1 + 2iT^{2} \)
7 \( 1 + (1.22 - 1.22i)T - 7iT^{2} \)
11 \( 1 - 11T^{2} \)
13 \( 1 + (3.67 + 3.67i)T + 13iT^{2} \)
17 \( 1 + 17iT^{2} \)
19 \( 1 - iT - 19T^{2} \)
23 \( 1 - 23iT^{2} \)
29 \( 1 + 29T^{2} \)
31 \( 1 - 7T + 31T^{2} \)
37 \( 1 + (-4.89 + 4.89i)T - 37iT^{2} \)
41 \( 1 - 41T^{2} \)
43 \( 1 + (-8.57 - 8.57i)T + 43iT^{2} \)
47 \( 1 + 47iT^{2} \)
53 \( 1 - 53iT^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 + 13T + 61T^{2} \)
67 \( 1 + (-11.0 + 11.0i)T - 67iT^{2} \)
71 \( 1 - 71T^{2} \)
73 \( 1 + (9.79 + 9.79i)T + 73iT^{2} \)
79 \( 1 + 4iT - 79T^{2} \)
83 \( 1 - 83iT^{2} \)
89 \( 1 + 89T^{2} \)
97 \( 1 + (13.4 - 13.4i)T - 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.75852285607938505228108889738, −13.77886842050910813597116665974, −12.52315760176480942592360239562, −10.91716168672346151599909082160, −9.952799119937312366033459277162, −9.231432884730583854010018457341, −7.77393031490225384892523888350, −5.96228250188154202928945484523, −4.70269006944242844820140091690, −2.70868322794637484948616079394, 2.65308386127335085338012855862, 4.17428157854659057736214700116, 6.68718685796925635333848569441, 7.49437130344566530573441106044, 8.681011624422328193694113894818, 9.772617469579423903268941548710, 11.63542954061299969780224300316, 12.47035729593010947378529045910, 13.42674561746704285545492029157, 14.23187670196270868084606180817

Graph of the $Z$-function along the critical line