Properties

Label 2-75-1.1-c7-0-4
Degree $2$
Conductor $75$
Sign $1$
Analytic cond. $23.4288$
Root an. cond. $4.84033$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.02·2-s + 27·3-s − 118.·4-s − 81.6·6-s − 1.50e3·7-s + 746.·8-s + 729·9-s + 1.59e3·11-s − 3.20e3·12-s − 956.·13-s + 4.54e3·14-s + 1.29e4·16-s + 3.24e4·17-s − 2.20e3·18-s − 3.91e4·19-s − 4.06e4·21-s − 4.82e3·22-s + 5.93e4·23-s + 2.01e4·24-s + 2.88e3·26-s + 1.96e4·27-s + 1.78e5·28-s + 6.61e4·29-s − 1.96e4·31-s − 1.34e5·32-s + 4.31e4·33-s − 9.81e4·34-s + ⋯
L(s)  = 1  − 0.267·2-s + 0.577·3-s − 0.928·4-s − 0.154·6-s − 1.65·7-s + 0.515·8-s + 0.333·9-s + 0.361·11-s − 0.536·12-s − 0.120·13-s + 0.443·14-s + 0.790·16-s + 1.60·17-s − 0.0890·18-s − 1.31·19-s − 0.957·21-s − 0.0966·22-s + 1.01·23-s + 0.297·24-s + 0.0322·26-s + 0.192·27-s + 1.54·28-s + 0.503·29-s − 0.118·31-s − 0.726·32-s + 0.208·33-s − 0.428·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(75\)    =    \(3 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(23.4288\)
Root analytic conductor: \(4.84033\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 75,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(1.285384643\)
\(L(\frac12)\) \(\approx\) \(1.285384643\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 27T \)
5 \( 1 \)
good2 \( 1 + 3.02T + 128T^{2} \)
7 \( 1 + 1.50e3T + 8.23e5T^{2} \)
11 \( 1 - 1.59e3T + 1.94e7T^{2} \)
13 \( 1 + 956.T + 6.27e7T^{2} \)
17 \( 1 - 3.24e4T + 4.10e8T^{2} \)
19 \( 1 + 3.91e4T + 8.93e8T^{2} \)
23 \( 1 - 5.93e4T + 3.40e9T^{2} \)
29 \( 1 - 6.61e4T + 1.72e10T^{2} \)
31 \( 1 + 1.96e4T + 2.75e10T^{2} \)
37 \( 1 - 3.76e5T + 9.49e10T^{2} \)
41 \( 1 - 3.85e5T + 1.94e11T^{2} \)
43 \( 1 - 4.66e5T + 2.71e11T^{2} \)
47 \( 1 - 4.68e5T + 5.06e11T^{2} \)
53 \( 1 - 1.60e6T + 1.17e12T^{2} \)
59 \( 1 + 2.04e6T + 2.48e12T^{2} \)
61 \( 1 + 3.78e5T + 3.14e12T^{2} \)
67 \( 1 + 4.64e3T + 6.06e12T^{2} \)
71 \( 1 + 2.79e6T + 9.09e12T^{2} \)
73 \( 1 + 2.01e6T + 1.10e13T^{2} \)
79 \( 1 - 1.76e6T + 1.92e13T^{2} \)
83 \( 1 + 3.06e6T + 2.71e13T^{2} \)
89 \( 1 + 6.14e6T + 4.42e13T^{2} \)
97 \( 1 - 3.02e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.03614991956491371217596683548, −12.45312526020632829121850573305, −10.40995589033297398754928463468, −9.567386501450386882363102599012, −8.784418888474675965628471840629, −7.41829928262291887920110907561, −5.96833085965788158847664305618, −4.17457456367466495301318606490, −3.00116470512469888020581603410, −0.77249770179707580692586814446, 0.77249770179707580692586814446, 3.00116470512469888020581603410, 4.17457456367466495301318606490, 5.96833085965788158847664305618, 7.41829928262291887920110907561, 8.784418888474675965628471840629, 9.567386501450386882363102599012, 10.40995589033297398754928463468, 12.45312526020632829121850573305, 13.03614991956491371217596683548

Graph of the $Z$-function along the critical line