L(s) = 1 | + (−0.687 − 1.23i)2-s + 3.16i·3-s + (−1.05 + 1.69i)4-s − 1.11i·5-s + (3.91 − 2.17i)6-s − 7-s + (2.82 + 0.133i)8-s − 7.03·9-s + (−1.38 + 0.768i)10-s − 4.51i·11-s + (−5.38 − 3.33i)12-s − i·13-s + (0.687 + 1.23i)14-s + 3.54·15-s + (−1.77 − 3.58i)16-s − 4.44·17-s + ⋯ |
L(s) = 1 | + (−0.486 − 0.873i)2-s + 1.82i·3-s + (−0.527 + 0.849i)4-s − 0.499i·5-s + (1.59 − 0.889i)6-s − 0.377·7-s + (0.998 + 0.0473i)8-s − 2.34·9-s + (−0.436 + 0.243i)10-s − 1.36i·11-s + (−1.55 − 0.963i)12-s − 0.277i·13-s + (0.183 + 0.330i)14-s + 0.914·15-s + (−0.444 − 0.895i)16-s − 1.07·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0473 + 0.998i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0473 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.399198 - 0.418550i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.399198 - 0.418550i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.687 + 1.23i)T \) |
| 7 | \( 1 + T \) |
| 13 | \( 1 + iT \) |
good | 3 | \( 1 - 3.16iT - 3T^{2} \) |
| 5 | \( 1 + 1.11iT - 5T^{2} \) |
| 11 | \( 1 + 4.51iT - 11T^{2} \) |
| 17 | \( 1 + 4.44T + 17T^{2} \) |
| 19 | \( 1 + 6.89iT - 19T^{2} \) |
| 23 | \( 1 + 2.66T + 23T^{2} \) |
| 29 | \( 1 - 6.01iT - 29T^{2} \) |
| 31 | \( 1 - 10.4T + 31T^{2} \) |
| 37 | \( 1 + 2.80iT - 37T^{2} \) |
| 41 | \( 1 + 4.93T + 41T^{2} \) |
| 43 | \( 1 + 4.88iT - 43T^{2} \) |
| 47 | \( 1 + 6.35T + 47T^{2} \) |
| 53 | \( 1 - 6.02iT - 53T^{2} \) |
| 59 | \( 1 + 15.1iT - 59T^{2} \) |
| 61 | \( 1 + 6.44iT - 61T^{2} \) |
| 67 | \( 1 + 5.98iT - 67T^{2} \) |
| 71 | \( 1 - 0.527T + 71T^{2} \) |
| 73 | \( 1 + 7.57T + 73T^{2} \) |
| 79 | \( 1 - 4.85T + 79T^{2} \) |
| 83 | \( 1 + 2.98iT - 83T^{2} \) |
| 89 | \( 1 - 5.07T + 89T^{2} \) |
| 97 | \( 1 + 17.4T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.20573027822960570782592776964, −9.360558328490462461600699132769, −8.779207937833111812856609358745, −8.315268143461869137091202732814, −6.54212715574428303049279302341, −5.14539783269910858871594079947, −4.55983952639144084259920584926, −3.48005394069330040551332337268, −2.77441807576272029123784343488, −0.36006272947039982984368748439,
1.45418596617170237518537343692, 2.49654741513767257070033202205, 4.41674082807959429228208904860, 5.84385022622702782903346998864, 6.60781717557432566136515186012, 6.95654037602235390681871073602, 7.914872781681681035687869862727, 8.433825190891520026768714607213, 9.661353390046216070638546311375, 10.39175342949236042447055537297