Properties

Label 2-7203-1.1-c1-0-302
Degree $2$
Conductor $7203$
Sign $-1$
Analytic cond. $57.5162$
Root an. cond. $7.58394$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.88·2-s + 3-s + 1.53·4-s − 2.44·5-s + 1.88·6-s − 0.867·8-s + 9-s − 4.59·10-s + 3.12·11-s + 1.53·12-s − 3.06·13-s − 2.44·15-s − 4.70·16-s + 4.97·17-s + 1.88·18-s + 3.78·19-s − 3.75·20-s + 5.87·22-s − 8.35·23-s − 0.867·24-s + 0.957·25-s − 5.76·26-s + 27-s − 8.89·29-s − 4.59·30-s + 3.12·31-s − 7.12·32-s + ⋯
L(s)  = 1  + 1.33·2-s + 0.577·3-s + 0.769·4-s − 1.09·5-s + 0.768·6-s − 0.306·8-s + 0.333·9-s − 1.45·10-s + 0.942·11-s + 0.444·12-s − 0.849·13-s − 0.630·15-s − 1.17·16-s + 1.20·17-s + 0.443·18-s + 0.867·19-s − 0.839·20-s + 1.25·22-s − 1.74·23-s − 0.177·24-s + 0.191·25-s − 1.13·26-s + 0.192·27-s − 1.65·29-s − 0.838·30-s + 0.560·31-s − 1.25·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7203 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7203 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7203\)    =    \(3 \cdot 7^{4}\)
Sign: $-1$
Analytic conductor: \(57.5162\)
Root analytic conductor: \(7.58394\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7203,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
7 \( 1 \)
good2 \( 1 - 1.88T + 2T^{2} \)
5 \( 1 + 2.44T + 5T^{2} \)
11 \( 1 - 3.12T + 11T^{2} \)
13 \( 1 + 3.06T + 13T^{2} \)
17 \( 1 - 4.97T + 17T^{2} \)
19 \( 1 - 3.78T + 19T^{2} \)
23 \( 1 + 8.35T + 23T^{2} \)
29 \( 1 + 8.89T + 29T^{2} \)
31 \( 1 - 3.12T + 31T^{2} \)
37 \( 1 + 7.30T + 37T^{2} \)
41 \( 1 - 4.34T + 41T^{2} \)
43 \( 1 - 4.14T + 43T^{2} \)
47 \( 1 - 1.75T + 47T^{2} \)
53 \( 1 + 0.616T + 53T^{2} \)
59 \( 1 - 2.96T + 59T^{2} \)
61 \( 1 + 8.12T + 61T^{2} \)
67 \( 1 + 7.14T + 67T^{2} \)
71 \( 1 + 10.0T + 71T^{2} \)
73 \( 1 + 2.05T + 73T^{2} \)
79 \( 1 - 4.68T + 79T^{2} \)
83 \( 1 + 12.2T + 83T^{2} \)
89 \( 1 + 2.12T + 89T^{2} \)
97 \( 1 + 19.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.54710354895963783425356794071, −6.92558638588412810816639812860, −5.91641137031946525789401062599, −5.42544054802790467470624436488, −4.41172471308159584517974123552, −3.96338441575440485832200363473, −3.44909836483607747542789557197, −2.68896025982882497420802133744, −1.56626280634608182271473258170, 0, 1.56626280634608182271473258170, 2.68896025982882497420802133744, 3.44909836483607747542789557197, 3.96338441575440485832200363473, 4.41172471308159584517974123552, 5.42544054802790467470624436488, 5.91641137031946525789401062599, 6.92558638588412810816639812860, 7.54710354895963783425356794071

Graph of the $Z$-function along the critical line