Properties

Label 7203.2.a.k.1.21
Level $7203$
Weight $2$
Character 7203.1
Self dual yes
Analytic conductor $57.516$
Analytic rank $1$
Dimension $24$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7203,2,Mod(1,7203)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7203, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7203.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7203 = 3 \cdot 7^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7203.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,-6,24,18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.5162445759\)
Analytic rank: \(1\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 147)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.21
Character \(\chi\) \(=\) 7203.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.88124 q^{2} +1.00000 q^{3} +1.53907 q^{4} -2.44079 q^{5} +1.88124 q^{6} -0.867123 q^{8} +1.00000 q^{9} -4.59171 q^{10} +3.12497 q^{11} +1.53907 q^{12} -3.06454 q^{13} -2.44079 q^{15} -4.70940 q^{16} +4.97470 q^{17} +1.88124 q^{18} +3.78182 q^{19} -3.75654 q^{20} +5.87882 q^{22} -8.35677 q^{23} -0.867123 q^{24} +0.957455 q^{25} -5.76514 q^{26} +1.00000 q^{27} -8.89375 q^{29} -4.59171 q^{30} +3.12101 q^{31} -7.12528 q^{32} +3.12497 q^{33} +9.35861 q^{34} +1.53907 q^{36} -7.30956 q^{37} +7.11452 q^{38} -3.06454 q^{39} +2.11646 q^{40} +4.34364 q^{41} +4.14344 q^{43} +4.80954 q^{44} -2.44079 q^{45} -15.7211 q^{46} +1.75234 q^{47} -4.70940 q^{48} +1.80120 q^{50} +4.97470 q^{51} -4.71654 q^{52} -0.616802 q^{53} +1.88124 q^{54} -7.62739 q^{55} +3.78182 q^{57} -16.7313 q^{58} +2.96521 q^{59} -3.75654 q^{60} -8.12485 q^{61} +5.87137 q^{62} -3.98556 q^{64} +7.47990 q^{65} +5.87882 q^{66} -7.14360 q^{67} +7.65640 q^{68} -8.35677 q^{69} -10.0195 q^{71} -0.867123 q^{72} -2.05129 q^{73} -13.7511 q^{74} +0.957455 q^{75} +5.82048 q^{76} -5.76514 q^{78} +4.68957 q^{79} +11.4947 q^{80} +1.00000 q^{81} +8.17144 q^{82} -12.2277 q^{83} -12.1422 q^{85} +7.79482 q^{86} -8.89375 q^{87} -2.70973 q^{88} -2.12414 q^{89} -4.59171 q^{90} -12.8616 q^{92} +3.12101 q^{93} +3.29658 q^{94} -9.23063 q^{95} -7.12528 q^{96} -19.4268 q^{97} +3.12497 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 6 q^{2} + 24 q^{3} + 18 q^{4} - 6 q^{6} - 18 q^{8} + 24 q^{9} - 12 q^{10} - 12 q^{11} + 18 q^{12} - 14 q^{13} + 6 q^{16} + 2 q^{17} - 6 q^{18} - 26 q^{19} + 6 q^{20} - 24 q^{22} - 24 q^{23} - 18 q^{24}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.88124 1.33024 0.665119 0.746737i \(-0.268381\pi\)
0.665119 + 0.746737i \(0.268381\pi\)
\(3\) 1.00000 0.577350
\(4\) 1.53907 0.769534
\(5\) −2.44079 −1.09155 −0.545777 0.837930i \(-0.683765\pi\)
−0.545777 + 0.837930i \(0.683765\pi\)
\(6\) 1.88124 0.768014
\(7\) 0 0
\(8\) −0.867123 −0.306574
\(9\) 1.00000 0.333333
\(10\) −4.59171 −1.45203
\(11\) 3.12497 0.942213 0.471107 0.882076i \(-0.343855\pi\)
0.471107 + 0.882076i \(0.343855\pi\)
\(12\) 1.53907 0.444291
\(13\) −3.06454 −0.849950 −0.424975 0.905205i \(-0.639717\pi\)
−0.424975 + 0.905205i \(0.639717\pi\)
\(14\) 0 0
\(15\) −2.44079 −0.630209
\(16\) −4.70940 −1.17735
\(17\) 4.97470 1.20654 0.603271 0.797536i \(-0.293864\pi\)
0.603271 + 0.797536i \(0.293864\pi\)
\(18\) 1.88124 0.443413
\(19\) 3.78182 0.867609 0.433804 0.901007i \(-0.357171\pi\)
0.433804 + 0.901007i \(0.357171\pi\)
\(20\) −3.75654 −0.839989
\(21\) 0 0
\(22\) 5.87882 1.25337
\(23\) −8.35677 −1.74251 −0.871254 0.490833i \(-0.836693\pi\)
−0.871254 + 0.490833i \(0.836693\pi\)
\(24\) −0.867123 −0.177001
\(25\) 0.957455 0.191491
\(26\) −5.76514 −1.13064
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −8.89375 −1.65153 −0.825764 0.564015i \(-0.809256\pi\)
−0.825764 + 0.564015i \(0.809256\pi\)
\(30\) −4.59171 −0.838329
\(31\) 3.12101 0.560550 0.280275 0.959920i \(-0.409574\pi\)
0.280275 + 0.959920i \(0.409574\pi\)
\(32\) −7.12528 −1.25958
\(33\) 3.12497 0.543987
\(34\) 9.35861 1.60499
\(35\) 0 0
\(36\) 1.53907 0.256511
\(37\) −7.30956 −1.20168 −0.600842 0.799368i \(-0.705168\pi\)
−0.600842 + 0.799368i \(0.705168\pi\)
\(38\) 7.11452 1.15413
\(39\) −3.06454 −0.490719
\(40\) 2.11646 0.334642
\(41\) 4.34364 0.678363 0.339182 0.940721i \(-0.389850\pi\)
0.339182 + 0.940721i \(0.389850\pi\)
\(42\) 0 0
\(43\) 4.14344 0.631869 0.315935 0.948781i \(-0.397682\pi\)
0.315935 + 0.948781i \(0.397682\pi\)
\(44\) 4.80954 0.725065
\(45\) −2.44079 −0.363851
\(46\) −15.7211 −2.31795
\(47\) 1.75234 0.255606 0.127803 0.991800i \(-0.459208\pi\)
0.127803 + 0.991800i \(0.459208\pi\)
\(48\) −4.70940 −0.679744
\(49\) 0 0
\(50\) 1.80120 0.254729
\(51\) 4.97470 0.696597
\(52\) −4.71654 −0.654066
\(53\) −0.616802 −0.0847243 −0.0423621 0.999102i \(-0.513488\pi\)
−0.0423621 + 0.999102i \(0.513488\pi\)
\(54\) 1.88124 0.256005
\(55\) −7.62739 −1.02848
\(56\) 0 0
\(57\) 3.78182 0.500914
\(58\) −16.7313 −2.19693
\(59\) 2.96521 0.386038 0.193019 0.981195i \(-0.438172\pi\)
0.193019 + 0.981195i \(0.438172\pi\)
\(60\) −3.75654 −0.484968
\(61\) −8.12485 −1.04028 −0.520140 0.854081i \(-0.674120\pi\)
−0.520140 + 0.854081i \(0.674120\pi\)
\(62\) 5.87137 0.745665
\(63\) 0 0
\(64\) −3.98556 −0.498195
\(65\) 7.47990 0.927767
\(66\) 5.87882 0.723632
\(67\) −7.14360 −0.872729 −0.436365 0.899770i \(-0.643734\pi\)
−0.436365 + 0.899770i \(0.643734\pi\)
\(68\) 7.65640 0.928475
\(69\) −8.35677 −1.00604
\(70\) 0 0
\(71\) −10.0195 −1.18910 −0.594548 0.804060i \(-0.702669\pi\)
−0.594548 + 0.804060i \(0.702669\pi\)
\(72\) −0.867123 −0.102191
\(73\) −2.05129 −0.240086 −0.120043 0.992769i \(-0.538303\pi\)
−0.120043 + 0.992769i \(0.538303\pi\)
\(74\) −13.7511 −1.59853
\(75\) 0.957455 0.110557
\(76\) 5.82048 0.667655
\(77\) 0 0
\(78\) −5.76514 −0.652773
\(79\) 4.68957 0.527618 0.263809 0.964575i \(-0.415021\pi\)
0.263809 + 0.964575i \(0.415021\pi\)
\(80\) 11.4947 1.28514
\(81\) 1.00000 0.111111
\(82\) 8.17144 0.902385
\(83\) −12.2277 −1.34216 −0.671082 0.741383i \(-0.734170\pi\)
−0.671082 + 0.741383i \(0.734170\pi\)
\(84\) 0 0
\(85\) −12.1422 −1.31701
\(86\) 7.79482 0.840537
\(87\) −8.89375 −0.953510
\(88\) −2.70973 −0.288858
\(89\) −2.12414 −0.225158 −0.112579 0.993643i \(-0.535911\pi\)
−0.112579 + 0.993643i \(0.535911\pi\)
\(90\) −4.59171 −0.484009
\(91\) 0 0
\(92\) −12.8616 −1.34092
\(93\) 3.12101 0.323634
\(94\) 3.29658 0.340016
\(95\) −9.23063 −0.947042
\(96\) −7.12528 −0.727221
\(97\) −19.4268 −1.97249 −0.986247 0.165280i \(-0.947147\pi\)
−0.986247 + 0.165280i \(0.947147\pi\)
\(98\) 0 0
\(99\) 3.12497 0.314071
\(100\) 1.47359 0.147359
\(101\) 13.3576 1.32913 0.664563 0.747232i \(-0.268618\pi\)
0.664563 + 0.747232i \(0.268618\pi\)
\(102\) 9.35861 0.926640
\(103\) −11.8996 −1.17250 −0.586249 0.810131i \(-0.699396\pi\)
−0.586249 + 0.810131i \(0.699396\pi\)
\(104\) 2.65733 0.260573
\(105\) 0 0
\(106\) −1.16035 −0.112704
\(107\) −9.20277 −0.889666 −0.444833 0.895614i \(-0.646737\pi\)
−0.444833 + 0.895614i \(0.646737\pi\)
\(108\) 1.53907 0.148097
\(109\) −14.9121 −1.42832 −0.714159 0.699983i \(-0.753191\pi\)
−0.714159 + 0.699983i \(0.753191\pi\)
\(110\) −14.3490 −1.36812
\(111\) −7.30956 −0.693793
\(112\) 0 0
\(113\) 6.04421 0.568591 0.284296 0.958737i \(-0.408240\pi\)
0.284296 + 0.958737i \(0.408240\pi\)
\(114\) 7.11452 0.666335
\(115\) 20.3971 1.90204
\(116\) −13.6881 −1.27091
\(117\) −3.06454 −0.283317
\(118\) 5.57828 0.513522
\(119\) 0 0
\(120\) 2.11646 0.193206
\(121\) −1.23458 −0.112234
\(122\) −15.2848 −1.38382
\(123\) 4.34364 0.391653
\(124\) 4.80345 0.431362
\(125\) 9.86700 0.882532
\(126\) 0 0
\(127\) 14.8274 1.31572 0.657858 0.753142i \(-0.271463\pi\)
0.657858 + 0.753142i \(0.271463\pi\)
\(128\) 6.75276 0.596865
\(129\) 4.14344 0.364810
\(130\) 14.0715 1.23415
\(131\) −9.42020 −0.823047 −0.411524 0.911399i \(-0.635003\pi\)
−0.411524 + 0.911399i \(0.635003\pi\)
\(132\) 4.80954 0.418617
\(133\) 0 0
\(134\) −13.4388 −1.16094
\(135\) −2.44079 −0.210070
\(136\) −4.31367 −0.369894
\(137\) −8.94971 −0.764625 −0.382313 0.924033i \(-0.624872\pi\)
−0.382313 + 0.924033i \(0.624872\pi\)
\(138\) −15.7211 −1.33827
\(139\) −17.1971 −1.45864 −0.729320 0.684173i \(-0.760163\pi\)
−0.729320 + 0.684173i \(0.760163\pi\)
\(140\) 0 0
\(141\) 1.75234 0.147574
\(142\) −18.8491 −1.58178
\(143\) −9.57659 −0.800834
\(144\) −4.70940 −0.392450
\(145\) 21.7078 1.80273
\(146\) −3.85898 −0.319371
\(147\) 0 0
\(148\) −11.2499 −0.924738
\(149\) 10.7119 0.877552 0.438776 0.898596i \(-0.355412\pi\)
0.438776 + 0.898596i \(0.355412\pi\)
\(150\) 1.80120 0.147068
\(151\) −2.49200 −0.202796 −0.101398 0.994846i \(-0.532332\pi\)
−0.101398 + 0.994846i \(0.532332\pi\)
\(152\) −3.27930 −0.265987
\(153\) 4.97470 0.402181
\(154\) 0 0
\(155\) −7.61773 −0.611870
\(156\) −4.71654 −0.377625
\(157\) −10.6777 −0.852170 −0.426085 0.904683i \(-0.640108\pi\)
−0.426085 + 0.904683i \(0.640108\pi\)
\(158\) 8.82221 0.701857
\(159\) −0.616802 −0.0489156
\(160\) 17.3913 1.37490
\(161\) 0 0
\(162\) 1.88124 0.147804
\(163\) 20.4082 1.59849 0.799246 0.601003i \(-0.205232\pi\)
0.799246 + 0.601003i \(0.205232\pi\)
\(164\) 6.68517 0.522024
\(165\) −7.62739 −0.593791
\(166\) −23.0032 −1.78540
\(167\) −6.08401 −0.470795 −0.235398 0.971899i \(-0.575639\pi\)
−0.235398 + 0.971899i \(0.575639\pi\)
\(168\) 0 0
\(169\) −3.60860 −0.277585
\(170\) −22.8424 −1.75193
\(171\) 3.78182 0.289203
\(172\) 6.37705 0.486245
\(173\) 4.69180 0.356711 0.178355 0.983966i \(-0.442922\pi\)
0.178355 + 0.983966i \(0.442922\pi\)
\(174\) −16.7313 −1.26840
\(175\) 0 0
\(176\) −14.7167 −1.10932
\(177\) 2.96521 0.222879
\(178\) −3.99602 −0.299514
\(179\) 5.55986 0.415563 0.207782 0.978175i \(-0.433376\pi\)
0.207782 + 0.978175i \(0.433376\pi\)
\(180\) −3.75654 −0.279996
\(181\) 20.2113 1.50229 0.751145 0.660137i \(-0.229502\pi\)
0.751145 + 0.660137i \(0.229502\pi\)
\(182\) 0 0
\(183\) −8.12485 −0.600606
\(184\) 7.24635 0.534208
\(185\) 17.8411 1.31170
\(186\) 5.87137 0.430510
\(187\) 15.5458 1.13682
\(188\) 2.69698 0.196697
\(189\) 0 0
\(190\) −17.3650 −1.25979
\(191\) −11.5657 −0.836867 −0.418434 0.908247i \(-0.637421\pi\)
−0.418434 + 0.908247i \(0.637421\pi\)
\(192\) −3.98556 −0.287633
\(193\) 3.21953 0.231747 0.115873 0.993264i \(-0.463033\pi\)
0.115873 + 0.993264i \(0.463033\pi\)
\(194\) −36.5465 −2.62389
\(195\) 7.47990 0.535646
\(196\) 0 0
\(197\) −17.0222 −1.21278 −0.606389 0.795168i \(-0.707383\pi\)
−0.606389 + 0.795168i \(0.707383\pi\)
\(198\) 5.87882 0.417789
\(199\) 23.3830 1.65758 0.828788 0.559563i \(-0.189031\pi\)
0.828788 + 0.559563i \(0.189031\pi\)
\(200\) −0.830231 −0.0587062
\(201\) −7.14360 −0.503871
\(202\) 25.1288 1.76806
\(203\) 0 0
\(204\) 7.65640 0.536055
\(205\) −10.6019 −0.740470
\(206\) −22.3859 −1.55970
\(207\) −8.35677 −0.580836
\(208\) 14.4322 1.00069
\(209\) 11.8181 0.817472
\(210\) 0 0
\(211\) −18.9230 −1.30271 −0.651357 0.758772i \(-0.725800\pi\)
−0.651357 + 0.758772i \(0.725800\pi\)
\(212\) −0.949301 −0.0651983
\(213\) −10.0195 −0.686525
\(214\) −17.3126 −1.18347
\(215\) −10.1133 −0.689720
\(216\) −0.867123 −0.0590002
\(217\) 0 0
\(218\) −28.0532 −1.90000
\(219\) −2.05129 −0.138613
\(220\) −11.7391 −0.791448
\(221\) −15.2452 −1.02550
\(222\) −13.7511 −0.922910
\(223\) −1.79025 −0.119884 −0.0599420 0.998202i \(-0.519092\pi\)
−0.0599420 + 0.998202i \(0.519092\pi\)
\(224\) 0 0
\(225\) 0.957455 0.0638303
\(226\) 11.3706 0.756362
\(227\) −5.39445 −0.358042 −0.179021 0.983845i \(-0.557293\pi\)
−0.179021 + 0.983845i \(0.557293\pi\)
\(228\) 5.82048 0.385471
\(229\) 26.9928 1.78374 0.891869 0.452294i \(-0.149394\pi\)
0.891869 + 0.452294i \(0.149394\pi\)
\(230\) 38.3719 2.53017
\(231\) 0 0
\(232\) 7.71198 0.506316
\(233\) −4.72429 −0.309498 −0.154749 0.987954i \(-0.549457\pi\)
−0.154749 + 0.987954i \(0.549457\pi\)
\(234\) −5.76514 −0.376879
\(235\) −4.27710 −0.279007
\(236\) 4.56367 0.297069
\(237\) 4.68957 0.304620
\(238\) 0 0
\(239\) 11.0565 0.715182 0.357591 0.933878i \(-0.383598\pi\)
0.357591 + 0.933878i \(0.383598\pi\)
\(240\) 11.4947 0.741978
\(241\) −11.0464 −0.711564 −0.355782 0.934569i \(-0.615785\pi\)
−0.355782 + 0.934569i \(0.615785\pi\)
\(242\) −2.32254 −0.149299
\(243\) 1.00000 0.0641500
\(244\) −12.5047 −0.800532
\(245\) 0 0
\(246\) 8.17144 0.520992
\(247\) −11.5895 −0.737424
\(248\) −2.70630 −0.171850
\(249\) −12.2277 −0.774898
\(250\) 18.5622 1.17398
\(251\) 0.781279 0.0493139 0.0246569 0.999696i \(-0.492151\pi\)
0.0246569 + 0.999696i \(0.492151\pi\)
\(252\) 0 0
\(253\) −26.1146 −1.64181
\(254\) 27.8938 1.75022
\(255\) −12.1422 −0.760374
\(256\) 20.6747 1.29217
\(257\) −0.850342 −0.0530429 −0.0265214 0.999648i \(-0.508443\pi\)
−0.0265214 + 0.999648i \(0.508443\pi\)
\(258\) 7.79482 0.485284
\(259\) 0 0
\(260\) 11.5121 0.713949
\(261\) −8.89375 −0.550509
\(262\) −17.7217 −1.09485
\(263\) −25.8474 −1.59382 −0.796909 0.604100i \(-0.793533\pi\)
−0.796909 + 0.604100i \(0.793533\pi\)
\(264\) −2.70973 −0.166772
\(265\) 1.50548 0.0924812
\(266\) 0 0
\(267\) −2.12414 −0.129995
\(268\) −10.9945 −0.671595
\(269\) −15.5617 −0.948813 −0.474407 0.880306i \(-0.657337\pi\)
−0.474407 + 0.880306i \(0.657337\pi\)
\(270\) −4.59171 −0.279443
\(271\) 2.33777 0.142009 0.0710046 0.997476i \(-0.477379\pi\)
0.0710046 + 0.997476i \(0.477379\pi\)
\(272\) −23.4279 −1.42052
\(273\) 0 0
\(274\) −16.8366 −1.01713
\(275\) 2.99201 0.180425
\(276\) −12.8616 −0.774180
\(277\) −7.74059 −0.465087 −0.232543 0.972586i \(-0.574705\pi\)
−0.232543 + 0.972586i \(0.574705\pi\)
\(278\) −32.3519 −1.94034
\(279\) 3.12101 0.186850
\(280\) 0 0
\(281\) 26.4752 1.57938 0.789689 0.613507i \(-0.210242\pi\)
0.789689 + 0.613507i \(0.210242\pi\)
\(282\) 3.29658 0.196309
\(283\) −20.1078 −1.19528 −0.597642 0.801763i \(-0.703896\pi\)
−0.597642 + 0.801763i \(0.703896\pi\)
\(284\) −15.4207 −0.915050
\(285\) −9.23063 −0.546775
\(286\) −18.0159 −1.06530
\(287\) 0 0
\(288\) −7.12528 −0.419861
\(289\) 7.74762 0.455742
\(290\) 40.8376 2.39806
\(291\) −19.4268 −1.13882
\(292\) −3.15708 −0.184754
\(293\) 9.06933 0.529836 0.264918 0.964271i \(-0.414655\pi\)
0.264918 + 0.964271i \(0.414655\pi\)
\(294\) 0 0
\(295\) −7.23746 −0.421381
\(296\) 6.33829 0.368406
\(297\) 3.12497 0.181329
\(298\) 20.1516 1.16735
\(299\) 25.6097 1.48104
\(300\) 1.47359 0.0850777
\(301\) 0 0
\(302\) −4.68806 −0.269767
\(303\) 13.3576 0.767372
\(304\) −17.8101 −1.02148
\(305\) 19.8310 1.13552
\(306\) 9.35861 0.534996
\(307\) −5.34057 −0.304803 −0.152401 0.988319i \(-0.548701\pi\)
−0.152401 + 0.988319i \(0.548701\pi\)
\(308\) 0 0
\(309\) −11.8996 −0.676942
\(310\) −14.3308 −0.813934
\(311\) −12.7374 −0.722270 −0.361135 0.932514i \(-0.617611\pi\)
−0.361135 + 0.932514i \(0.617611\pi\)
\(312\) 2.65733 0.150442
\(313\) −0.185603 −0.0104909 −0.00524545 0.999986i \(-0.501670\pi\)
−0.00524545 + 0.999986i \(0.501670\pi\)
\(314\) −20.0872 −1.13359
\(315\) 0 0
\(316\) 7.21757 0.406020
\(317\) −2.09076 −0.117429 −0.0587144 0.998275i \(-0.518700\pi\)
−0.0587144 + 0.998275i \(0.518700\pi\)
\(318\) −1.16035 −0.0650694
\(319\) −27.7927 −1.55609
\(320\) 9.72792 0.543807
\(321\) −9.20277 −0.513649
\(322\) 0 0
\(323\) 18.8134 1.04681
\(324\) 1.53907 0.0855038
\(325\) −2.93416 −0.162758
\(326\) 38.3927 2.12638
\(327\) −14.9121 −0.824640
\(328\) −3.76647 −0.207969
\(329\) 0 0
\(330\) −14.3490 −0.789884
\(331\) 5.86784 0.322526 0.161263 0.986912i \(-0.448443\pi\)
0.161263 + 0.986912i \(0.448443\pi\)
\(332\) −18.8193 −1.03284
\(333\) −7.30956 −0.400562
\(334\) −11.4455 −0.626270
\(335\) 17.4360 0.952632
\(336\) 0 0
\(337\) −14.8966 −0.811469 −0.405735 0.913991i \(-0.632984\pi\)
−0.405735 + 0.913991i \(0.632984\pi\)
\(338\) −6.78865 −0.369254
\(339\) 6.04421 0.328276
\(340\) −18.6877 −1.01348
\(341\) 9.75305 0.528157
\(342\) 7.11452 0.384709
\(343\) 0 0
\(344\) −3.59288 −0.193715
\(345\) 20.3971 1.09814
\(346\) 8.82640 0.474510
\(347\) −9.70753 −0.521128 −0.260564 0.965457i \(-0.583908\pi\)
−0.260564 + 0.965457i \(0.583908\pi\)
\(348\) −13.6881 −0.733759
\(349\) −28.1924 −1.50910 −0.754552 0.656240i \(-0.772146\pi\)
−0.754552 + 0.656240i \(0.772146\pi\)
\(350\) 0 0
\(351\) −3.06454 −0.163573
\(352\) −22.2663 −1.18680
\(353\) 32.7538 1.74331 0.871655 0.490120i \(-0.163047\pi\)
0.871655 + 0.490120i \(0.163047\pi\)
\(354\) 5.57828 0.296482
\(355\) 24.4555 1.29796
\(356\) −3.26920 −0.173267
\(357\) 0 0
\(358\) 10.4594 0.552799
\(359\) 31.1370 1.64335 0.821674 0.569958i \(-0.193040\pi\)
0.821674 + 0.569958i \(0.193040\pi\)
\(360\) 2.11646 0.111547
\(361\) −4.69784 −0.247255
\(362\) 38.0222 1.99840
\(363\) −1.23458 −0.0647986
\(364\) 0 0
\(365\) 5.00677 0.262066
\(366\) −15.2848 −0.798949
\(367\) 3.96940 0.207201 0.103601 0.994619i \(-0.466964\pi\)
0.103601 + 0.994619i \(0.466964\pi\)
\(368\) 39.3554 2.05154
\(369\) 4.34364 0.226121
\(370\) 33.5634 1.74488
\(371\) 0 0
\(372\) 4.80345 0.249047
\(373\) 20.4178 1.05719 0.528596 0.848873i \(-0.322719\pi\)
0.528596 + 0.848873i \(0.322719\pi\)
\(374\) 29.2453 1.51224
\(375\) 9.86700 0.509530
\(376\) −1.51950 −0.0783621
\(377\) 27.2553 1.40372
\(378\) 0 0
\(379\) 22.5419 1.15790 0.578951 0.815363i \(-0.303462\pi\)
0.578951 + 0.815363i \(0.303462\pi\)
\(380\) −14.2066 −0.728782
\(381\) 14.8274 0.759629
\(382\) −21.7579 −1.11323
\(383\) 19.1727 0.979679 0.489839 0.871813i \(-0.337055\pi\)
0.489839 + 0.871813i \(0.337055\pi\)
\(384\) 6.75276 0.344600
\(385\) 0 0
\(386\) 6.05671 0.308279
\(387\) 4.14344 0.210623
\(388\) −29.8992 −1.51790
\(389\) 29.7518 1.50848 0.754239 0.656600i \(-0.228006\pi\)
0.754239 + 0.656600i \(0.228006\pi\)
\(390\) 14.0715 0.712538
\(391\) −41.5724 −2.10241
\(392\) 0 0
\(393\) −9.42020 −0.475186
\(394\) −32.0228 −1.61328
\(395\) −11.4463 −0.575923
\(396\) 4.80954 0.241688
\(397\) 32.7072 1.64153 0.820763 0.571269i \(-0.193549\pi\)
0.820763 + 0.571269i \(0.193549\pi\)
\(398\) 43.9890 2.20497
\(399\) 0 0
\(400\) −4.50904 −0.225452
\(401\) −1.69001 −0.0843950 −0.0421975 0.999109i \(-0.513436\pi\)
−0.0421975 + 0.999109i \(0.513436\pi\)
\(402\) −13.4388 −0.670268
\(403\) −9.56445 −0.476439
\(404\) 20.5582 1.02281
\(405\) −2.44079 −0.121284
\(406\) 0 0
\(407\) −22.8421 −1.13224
\(408\) −4.31367 −0.213559
\(409\) 0.438800 0.0216972 0.0108486 0.999941i \(-0.496547\pi\)
0.0108486 + 0.999941i \(0.496547\pi\)
\(410\) −19.9448 −0.985002
\(411\) −8.94971 −0.441457
\(412\) −18.3142 −0.902277
\(413\) 0 0
\(414\) −15.7211 −0.772650
\(415\) 29.8452 1.46504
\(416\) 21.8357 1.07058
\(417\) −17.1971 −0.842146
\(418\) 22.2326 1.08743
\(419\) 17.7290 0.866117 0.433059 0.901366i \(-0.357434\pi\)
0.433059 + 0.901366i \(0.357434\pi\)
\(420\) 0 0
\(421\) −12.8327 −0.625427 −0.312713 0.949848i \(-0.601238\pi\)
−0.312713 + 0.949848i \(0.601238\pi\)
\(422\) −35.5987 −1.73292
\(423\) 1.75234 0.0852018
\(424\) 0.534843 0.0259743
\(425\) 4.76305 0.231042
\(426\) −18.8491 −0.913242
\(427\) 0 0
\(428\) −14.1637 −0.684628
\(429\) −9.57659 −0.462362
\(430\) −19.0255 −0.917492
\(431\) −28.7998 −1.38724 −0.693620 0.720341i \(-0.743985\pi\)
−0.693620 + 0.720341i \(0.743985\pi\)
\(432\) −4.70940 −0.226581
\(433\) 3.39719 0.163259 0.0816293 0.996663i \(-0.473988\pi\)
0.0816293 + 0.996663i \(0.473988\pi\)
\(434\) 0 0
\(435\) 21.7078 1.04081
\(436\) −22.9507 −1.09914
\(437\) −31.6038 −1.51182
\(438\) −3.85898 −0.184389
\(439\) 13.6035 0.649259 0.324629 0.945841i \(-0.394760\pi\)
0.324629 + 0.945841i \(0.394760\pi\)
\(440\) 6.61388 0.315304
\(441\) 0 0
\(442\) −28.6798 −1.36416
\(443\) 33.1359 1.57433 0.787166 0.616741i \(-0.211548\pi\)
0.787166 + 0.616741i \(0.211548\pi\)
\(444\) −11.2499 −0.533898
\(445\) 5.18458 0.245773
\(446\) −3.36789 −0.159474
\(447\) 10.7119 0.506655
\(448\) 0 0
\(449\) −0.154675 −0.00729955 −0.00364977 0.999993i \(-0.501162\pi\)
−0.00364977 + 0.999993i \(0.501162\pi\)
\(450\) 1.80120 0.0849095
\(451\) 13.5737 0.639163
\(452\) 9.30245 0.437551
\(453\) −2.49200 −0.117085
\(454\) −10.1483 −0.476281
\(455\) 0 0
\(456\) −3.27930 −0.153567
\(457\) 24.2464 1.13420 0.567098 0.823650i \(-0.308066\pi\)
0.567098 + 0.823650i \(0.308066\pi\)
\(458\) 50.7801 2.37280
\(459\) 4.97470 0.232199
\(460\) 31.3926 1.46369
\(461\) −17.5384 −0.816843 −0.408421 0.912794i \(-0.633921\pi\)
−0.408421 + 0.912794i \(0.633921\pi\)
\(462\) 0 0
\(463\) −33.7820 −1.56998 −0.784991 0.619508i \(-0.787332\pi\)
−0.784991 + 0.619508i \(0.787332\pi\)
\(464\) 41.8843 1.94443
\(465\) −7.61773 −0.353264
\(466\) −8.88752 −0.411707
\(467\) −12.4132 −0.574416 −0.287208 0.957868i \(-0.592727\pi\)
−0.287208 + 0.957868i \(0.592727\pi\)
\(468\) −4.71654 −0.218022
\(469\) 0 0
\(470\) −8.04626 −0.371146
\(471\) −10.6777 −0.492000
\(472\) −2.57120 −0.118349
\(473\) 12.9481 0.595356
\(474\) 8.82221 0.405218
\(475\) 3.62092 0.166139
\(476\) 0 0
\(477\) −0.616802 −0.0282414
\(478\) 20.7999 0.951363
\(479\) 24.2228 1.10677 0.553384 0.832926i \(-0.313336\pi\)
0.553384 + 0.832926i \(0.313336\pi\)
\(480\) 17.3913 0.793801
\(481\) 22.4004 1.02137
\(482\) −20.7810 −0.946549
\(483\) 0 0
\(484\) −1.90010 −0.0863683
\(485\) 47.4167 2.15308
\(486\) 1.88124 0.0853348
\(487\) −16.5843 −0.751507 −0.375753 0.926720i \(-0.622616\pi\)
−0.375753 + 0.926720i \(0.622616\pi\)
\(488\) 7.04524 0.318923
\(489\) 20.4082 0.922890
\(490\) 0 0
\(491\) 19.6133 0.885137 0.442569 0.896735i \(-0.354067\pi\)
0.442569 + 0.896735i \(0.354067\pi\)
\(492\) 6.68517 0.301391
\(493\) −44.2437 −1.99264
\(494\) −21.8027 −0.980950
\(495\) −7.62739 −0.342826
\(496\) −14.6981 −0.659964
\(497\) 0 0
\(498\) −23.0032 −1.03080
\(499\) −4.62050 −0.206842 −0.103421 0.994638i \(-0.532979\pi\)
−0.103421 + 0.994638i \(0.532979\pi\)
\(500\) 15.1860 0.679138
\(501\) −6.08401 −0.271814
\(502\) 1.46977 0.0655992
\(503\) 18.4737 0.823703 0.411851 0.911251i \(-0.364882\pi\)
0.411851 + 0.911251i \(0.364882\pi\)
\(504\) 0 0
\(505\) −32.6030 −1.45081
\(506\) −49.1279 −2.18400
\(507\) −3.60860 −0.160264
\(508\) 22.8203 1.01249
\(509\) −33.3903 −1.48000 −0.739999 0.672608i \(-0.765174\pi\)
−0.739999 + 0.672608i \(0.765174\pi\)
\(510\) −22.8424 −1.01148
\(511\) 0 0
\(512\) 25.3886 1.12203
\(513\) 3.78182 0.166971
\(514\) −1.59970 −0.0705597
\(515\) 29.0443 1.27984
\(516\) 6.37705 0.280734
\(517\) 5.47602 0.240835
\(518\) 0 0
\(519\) 4.69180 0.205947
\(520\) −6.48599 −0.284429
\(521\) −0.932535 −0.0408551 −0.0204275 0.999791i \(-0.506503\pi\)
−0.0204275 + 0.999791i \(0.506503\pi\)
\(522\) −16.7313 −0.732309
\(523\) −19.3199 −0.844802 −0.422401 0.906409i \(-0.638813\pi\)
−0.422401 + 0.906409i \(0.638813\pi\)
\(524\) −14.4983 −0.633363
\(525\) 0 0
\(526\) −48.6251 −2.12016
\(527\) 15.5261 0.676327
\(528\) −14.7167 −0.640464
\(529\) 46.8357 2.03633
\(530\) 2.83218 0.123022
\(531\) 2.96521 0.128679
\(532\) 0 0
\(533\) −13.3113 −0.576575
\(534\) −3.99602 −0.172925
\(535\) 22.4620 0.971119
\(536\) 6.19438 0.267556
\(537\) 5.55986 0.239926
\(538\) −29.2753 −1.26215
\(539\) 0 0
\(540\) −3.75654 −0.161656
\(541\) −37.3193 −1.60448 −0.802241 0.597000i \(-0.796359\pi\)
−0.802241 + 0.597000i \(0.796359\pi\)
\(542\) 4.39790 0.188906
\(543\) 20.2113 0.867348
\(544\) −35.4461 −1.51974
\(545\) 36.3973 1.55909
\(546\) 0 0
\(547\) 12.1711 0.520398 0.260199 0.965555i \(-0.416212\pi\)
0.260199 + 0.965555i \(0.416212\pi\)
\(548\) −13.7742 −0.588405
\(549\) −8.12485 −0.346760
\(550\) 5.62870 0.240009
\(551\) −33.6346 −1.43288
\(552\) 7.24635 0.308425
\(553\) 0 0
\(554\) −14.5619 −0.618677
\(555\) 17.8411 0.757313
\(556\) −26.4675 −1.12247
\(557\) −12.9566 −0.548987 −0.274494 0.961589i \(-0.588510\pi\)
−0.274494 + 0.961589i \(0.588510\pi\)
\(558\) 5.87137 0.248555
\(559\) −12.6977 −0.537058
\(560\) 0 0
\(561\) 15.5458 0.656343
\(562\) 49.8062 2.10095
\(563\) 23.6463 0.996574 0.498287 0.867012i \(-0.333963\pi\)
0.498287 + 0.867012i \(0.333963\pi\)
\(564\) 2.69698 0.113563
\(565\) −14.7526 −0.620648
\(566\) −37.8276 −1.59001
\(567\) 0 0
\(568\) 8.68814 0.364546
\(569\) −15.0554 −0.631154 −0.315577 0.948900i \(-0.602198\pi\)
−0.315577 + 0.948900i \(0.602198\pi\)
\(570\) −17.3650 −0.727341
\(571\) 6.29054 0.263251 0.131626 0.991300i \(-0.457980\pi\)
0.131626 + 0.991300i \(0.457980\pi\)
\(572\) −14.7390 −0.616270
\(573\) −11.5657 −0.483165
\(574\) 0 0
\(575\) −8.00123 −0.333674
\(576\) −3.98556 −0.166065
\(577\) 33.5603 1.39713 0.698566 0.715546i \(-0.253822\pi\)
0.698566 + 0.715546i \(0.253822\pi\)
\(578\) 14.5751 0.606246
\(579\) 3.21953 0.133799
\(580\) 33.4098 1.38727
\(581\) 0 0
\(582\) −36.5465 −1.51490
\(583\) −1.92749 −0.0798283
\(584\) 1.77872 0.0736040
\(585\) 7.47990 0.309256
\(586\) 17.0616 0.704808
\(587\) −19.8347 −0.818667 −0.409334 0.912385i \(-0.634239\pi\)
−0.409334 + 0.912385i \(0.634239\pi\)
\(588\) 0 0
\(589\) 11.8031 0.486338
\(590\) −13.6154 −0.560537
\(591\) −17.0222 −0.700198
\(592\) 34.4237 1.41480
\(593\) 26.3481 1.08198 0.540992 0.841027i \(-0.318049\pi\)
0.540992 + 0.841027i \(0.318049\pi\)
\(594\) 5.87882 0.241211
\(595\) 0 0
\(596\) 16.4863 0.675306
\(597\) 23.3830 0.957002
\(598\) 48.1779 1.97014
\(599\) 11.0077 0.449762 0.224881 0.974386i \(-0.427801\pi\)
0.224881 + 0.974386i \(0.427801\pi\)
\(600\) −0.830231 −0.0338940
\(601\) 25.8420 1.05412 0.527059 0.849828i \(-0.323295\pi\)
0.527059 + 0.849828i \(0.323295\pi\)
\(602\) 0 0
\(603\) −7.14360 −0.290910
\(604\) −3.83536 −0.156059
\(605\) 3.01335 0.122510
\(606\) 25.1288 1.02079
\(607\) 12.1297 0.492330 0.246165 0.969228i \(-0.420830\pi\)
0.246165 + 0.969228i \(0.420830\pi\)
\(608\) −26.9465 −1.09283
\(609\) 0 0
\(610\) 37.3070 1.51052
\(611\) −5.37012 −0.217252
\(612\) 7.65640 0.309492
\(613\) −0.287193 −0.0115996 −0.00579982 0.999983i \(-0.501846\pi\)
−0.00579982 + 0.999983i \(0.501846\pi\)
\(614\) −10.0469 −0.405460
\(615\) −10.6019 −0.427511
\(616\) 0 0
\(617\) −10.4448 −0.420491 −0.210246 0.977649i \(-0.567426\pi\)
−0.210246 + 0.977649i \(0.567426\pi\)
\(618\) −22.3859 −0.900494
\(619\) −18.3218 −0.736416 −0.368208 0.929743i \(-0.620029\pi\)
−0.368208 + 0.929743i \(0.620029\pi\)
\(620\) −11.7242 −0.470855
\(621\) −8.35677 −0.335346
\(622\) −23.9621 −0.960792
\(623\) 0 0
\(624\) 14.4322 0.577749
\(625\) −28.8706 −1.15482
\(626\) −0.349164 −0.0139554
\(627\) 11.8181 0.471968
\(628\) −16.4336 −0.655774
\(629\) −36.3629 −1.44988
\(630\) 0 0
\(631\) −11.7491 −0.467725 −0.233863 0.972270i \(-0.575137\pi\)
−0.233863 + 0.972270i \(0.575137\pi\)
\(632\) −4.06643 −0.161754
\(633\) −18.9230 −0.752122
\(634\) −3.93323 −0.156208
\(635\) −36.1905 −1.43618
\(636\) −0.949301 −0.0376422
\(637\) 0 0
\(638\) −52.2848 −2.06997
\(639\) −10.0195 −0.396365
\(640\) −16.4821 −0.651510
\(641\) 32.3072 1.27606 0.638029 0.770012i \(-0.279750\pi\)
0.638029 + 0.770012i \(0.279750\pi\)
\(642\) −17.3126 −0.683275
\(643\) −8.60507 −0.339351 −0.169675 0.985500i \(-0.554272\pi\)
−0.169675 + 0.985500i \(0.554272\pi\)
\(644\) 0 0
\(645\) −10.1133 −0.398210
\(646\) 35.3926 1.39250
\(647\) 5.21343 0.204961 0.102481 0.994735i \(-0.467322\pi\)
0.102481 + 0.994735i \(0.467322\pi\)
\(648\) −0.867123 −0.0340638
\(649\) 9.26619 0.363730
\(650\) −5.51986 −0.216507
\(651\) 0 0
\(652\) 31.4096 1.23010
\(653\) −2.74874 −0.107567 −0.0537834 0.998553i \(-0.517128\pi\)
−0.0537834 + 0.998553i \(0.517128\pi\)
\(654\) −28.0532 −1.09697
\(655\) 22.9927 0.898401
\(656\) −20.4560 −0.798672
\(657\) −2.05129 −0.0800285
\(658\) 0 0
\(659\) 40.0883 1.56162 0.780809 0.624770i \(-0.214807\pi\)
0.780809 + 0.624770i \(0.214807\pi\)
\(660\) −11.7391 −0.456943
\(661\) 21.5867 0.839625 0.419813 0.907611i \(-0.362096\pi\)
0.419813 + 0.907611i \(0.362096\pi\)
\(662\) 11.0388 0.429036
\(663\) −15.2452 −0.592073
\(664\) 10.6029 0.411473
\(665\) 0 0
\(666\) −13.7511 −0.532842
\(667\) 74.3231 2.87780
\(668\) −9.36372 −0.362293
\(669\) −1.79025 −0.0692150
\(670\) 32.8014 1.26723
\(671\) −25.3899 −0.980166
\(672\) 0 0
\(673\) 31.6950 1.22175 0.610876 0.791726i \(-0.290817\pi\)
0.610876 + 0.791726i \(0.290817\pi\)
\(674\) −28.0241 −1.07945
\(675\) 0.957455 0.0368524
\(676\) −5.55388 −0.213611
\(677\) −9.83778 −0.378097 −0.189048 0.981968i \(-0.560540\pi\)
−0.189048 + 0.981968i \(0.560540\pi\)
\(678\) 11.3706 0.436686
\(679\) 0 0
\(680\) 10.5288 0.403760
\(681\) −5.39445 −0.206716
\(682\) 18.3478 0.702575
\(683\) −34.8927 −1.33513 −0.667565 0.744551i \(-0.732663\pi\)
−0.667565 + 0.744551i \(0.732663\pi\)
\(684\) 5.82048 0.222552
\(685\) 21.8444 0.834630
\(686\) 0 0
\(687\) 26.9928 1.02984
\(688\) −19.5132 −0.743932
\(689\) 1.89021 0.0720114
\(690\) 38.3719 1.46079
\(691\) −46.9324 −1.78539 −0.892696 0.450659i \(-0.851189\pi\)
−0.892696 + 0.450659i \(0.851189\pi\)
\(692\) 7.22100 0.274501
\(693\) 0 0
\(694\) −18.2622 −0.693224
\(695\) 41.9745 1.59218
\(696\) 7.71198 0.292322
\(697\) 21.6083 0.818473
\(698\) −53.0367 −2.00747
\(699\) −4.72429 −0.178689
\(700\) 0 0
\(701\) 8.03395 0.303438 0.151719 0.988424i \(-0.451519\pi\)
0.151719 + 0.988424i \(0.451519\pi\)
\(702\) −5.76514 −0.217591
\(703\) −27.6434 −1.04259
\(704\) −12.4548 −0.469406
\(705\) −4.27710 −0.161085
\(706\) 61.6178 2.31902
\(707\) 0 0
\(708\) 4.56367 0.171513
\(709\) 18.4946 0.694579 0.347289 0.937758i \(-0.387102\pi\)
0.347289 + 0.937758i \(0.387102\pi\)
\(710\) 46.0067 1.72660
\(711\) 4.68957 0.175873
\(712\) 1.84189 0.0690278
\(713\) −26.0816 −0.976762
\(714\) 0 0
\(715\) 23.3744 0.874154
\(716\) 8.55701 0.319790
\(717\) 11.0565 0.412911
\(718\) 58.5762 2.18604
\(719\) 34.0782 1.27090 0.635451 0.772141i \(-0.280814\pi\)
0.635451 + 0.772141i \(0.280814\pi\)
\(720\) 11.4947 0.428381
\(721\) 0 0
\(722\) −8.83777 −0.328908
\(723\) −11.0464 −0.410822
\(724\) 31.1065 1.15606
\(725\) −8.51536 −0.316253
\(726\) −2.32254 −0.0861976
\(727\) −34.4379 −1.27723 −0.638616 0.769525i \(-0.720493\pi\)
−0.638616 + 0.769525i \(0.720493\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 9.41895 0.348611
\(731\) 20.6124 0.762377
\(732\) −12.5047 −0.462187
\(733\) 34.5125 1.27475 0.637374 0.770554i \(-0.280021\pi\)
0.637374 + 0.770554i \(0.280021\pi\)
\(734\) 7.46740 0.275627
\(735\) 0 0
\(736\) 59.5444 2.19483
\(737\) −22.3235 −0.822297
\(738\) 8.17144 0.300795
\(739\) −5.01415 −0.184449 −0.0922243 0.995738i \(-0.529398\pi\)
−0.0922243 + 0.995738i \(0.529398\pi\)
\(740\) 27.4587 1.00940
\(741\) −11.5895 −0.425752
\(742\) 0 0
\(743\) 0.462539 0.0169689 0.00848445 0.999964i \(-0.497299\pi\)
0.00848445 + 0.999964i \(0.497299\pi\)
\(744\) −2.70630 −0.0992177
\(745\) −26.1455 −0.957896
\(746\) 38.4108 1.40632
\(747\) −12.2277 −0.447388
\(748\) 23.9260 0.874821
\(749\) 0 0
\(750\) 18.5622 0.677796
\(751\) −33.8518 −1.23527 −0.617635 0.786465i \(-0.711909\pi\)
−0.617635 + 0.786465i \(0.711909\pi\)
\(752\) −8.25249 −0.300937
\(753\) 0.781279 0.0284714
\(754\) 51.2737 1.86728
\(755\) 6.08246 0.221363
\(756\) 0 0
\(757\) −48.1596 −1.75039 −0.875196 0.483769i \(-0.839268\pi\)
−0.875196 + 0.483769i \(0.839268\pi\)
\(758\) 42.4068 1.54028
\(759\) −26.1146 −0.947901
\(760\) 8.00409 0.290339
\(761\) −13.6833 −0.496020 −0.248010 0.968758i \(-0.579777\pi\)
−0.248010 + 0.968758i \(0.579777\pi\)
\(762\) 27.8938 1.01049
\(763\) 0 0
\(764\) −17.8005 −0.643998
\(765\) −12.1422 −0.439002
\(766\) 36.0685 1.30321
\(767\) −9.08701 −0.328113
\(768\) 20.6747 0.746034
\(769\) 29.3762 1.05933 0.529666 0.848206i \(-0.322317\pi\)
0.529666 + 0.848206i \(0.322317\pi\)
\(770\) 0 0
\(771\) −0.850342 −0.0306243
\(772\) 4.95508 0.178337
\(773\) 29.7784 1.07105 0.535527 0.844518i \(-0.320113\pi\)
0.535527 + 0.844518i \(0.320113\pi\)
\(774\) 7.79482 0.280179
\(775\) 2.98822 0.107340
\(776\) 16.8454 0.604716
\(777\) 0 0
\(778\) 55.9704 2.00663
\(779\) 16.4269 0.588554
\(780\) 11.5121 0.412198
\(781\) −31.3106 −1.12038
\(782\) −78.2078 −2.79670
\(783\) −8.89375 −0.317837
\(784\) 0 0
\(785\) 26.0619 0.930190
\(786\) −17.7217 −0.632111
\(787\) 12.3603 0.440597 0.220298 0.975433i \(-0.429297\pi\)
0.220298 + 0.975433i \(0.429297\pi\)
\(788\) −26.1983 −0.933275
\(789\) −25.8474 −0.920191
\(790\) −21.5332 −0.766115
\(791\) 0 0
\(792\) −2.70973 −0.0962861
\(793\) 24.8989 0.884187
\(794\) 61.5301 2.18362
\(795\) 1.50548 0.0533940
\(796\) 35.9880 1.27556
\(797\) −25.9322 −0.918567 −0.459284 0.888290i \(-0.651894\pi\)
−0.459284 + 0.888290i \(0.651894\pi\)
\(798\) 0 0
\(799\) 8.71738 0.308399
\(800\) −6.82213 −0.241199
\(801\) −2.12414 −0.0750528
\(802\) −3.17931 −0.112266
\(803\) −6.41022 −0.226212
\(804\) −10.9945 −0.387746
\(805\) 0 0
\(806\) −17.9930 −0.633778
\(807\) −15.5617 −0.547797
\(808\) −11.5826 −0.407476
\(809\) 4.63400 0.162923 0.0814613 0.996677i \(-0.474041\pi\)
0.0814613 + 0.996677i \(0.474041\pi\)
\(810\) −4.59171 −0.161336
\(811\) −40.4196 −1.41932 −0.709662 0.704542i \(-0.751152\pi\)
−0.709662 + 0.704542i \(0.751152\pi\)
\(812\) 0 0
\(813\) 2.33777 0.0819891
\(814\) −42.9716 −1.50615
\(815\) −49.8121 −1.74484
\(816\) −23.4279 −0.820139
\(817\) 15.6698 0.548216
\(818\) 0.825488 0.0288625
\(819\) 0 0
\(820\) −16.3171 −0.569817
\(821\) −3.52675 −0.123084 −0.0615422 0.998104i \(-0.519602\pi\)
−0.0615422 + 0.998104i \(0.519602\pi\)
\(822\) −16.8366 −0.587242
\(823\) −12.4054 −0.432425 −0.216212 0.976346i \(-0.569370\pi\)
−0.216212 + 0.976346i \(0.569370\pi\)
\(824\) 10.3184 0.359458
\(825\) 2.99201 0.104169
\(826\) 0 0
\(827\) −2.04753 −0.0711995 −0.0355997 0.999366i \(-0.511334\pi\)
−0.0355997 + 0.999366i \(0.511334\pi\)
\(828\) −12.8616 −0.446973
\(829\) 8.55373 0.297083 0.148542 0.988906i \(-0.452542\pi\)
0.148542 + 0.988906i \(0.452542\pi\)
\(830\) 56.1461 1.94886
\(831\) −7.74059 −0.268518
\(832\) 12.2139 0.423441
\(833\) 0 0
\(834\) −32.3519 −1.12025
\(835\) 14.8498 0.513899
\(836\) 18.1888 0.629073
\(837\) 3.12101 0.107878
\(838\) 33.3525 1.15214
\(839\) 7.17783 0.247806 0.123903 0.992294i \(-0.460459\pi\)
0.123903 + 0.992294i \(0.460459\pi\)
\(840\) 0 0
\(841\) 50.0988 1.72755
\(842\) −24.1414 −0.831967
\(843\) 26.4752 0.911854
\(844\) −29.1238 −1.00248
\(845\) 8.80783 0.302999
\(846\) 3.29658 0.113339
\(847\) 0 0
\(848\) 2.90477 0.0997502
\(849\) −20.1078 −0.690098
\(850\) 8.96044 0.307341
\(851\) 61.0844 2.09394
\(852\) −15.4207 −0.528304
\(853\) 35.6724 1.22140 0.610701 0.791862i \(-0.290888\pi\)
0.610701 + 0.791862i \(0.290888\pi\)
\(854\) 0 0
\(855\) −9.23063 −0.315681
\(856\) 7.97994 0.272749
\(857\) 32.3150 1.10386 0.551930 0.833890i \(-0.313891\pi\)
0.551930 + 0.833890i \(0.313891\pi\)
\(858\) −18.0159 −0.615052
\(859\) 3.70986 0.126579 0.0632894 0.997995i \(-0.479841\pi\)
0.0632894 + 0.997995i \(0.479841\pi\)
\(860\) −15.5650 −0.530763
\(861\) 0 0
\(862\) −54.1795 −1.84536
\(863\) 16.0976 0.547970 0.273985 0.961734i \(-0.411658\pi\)
0.273985 + 0.961734i \(0.411658\pi\)
\(864\) −7.12528 −0.242407
\(865\) −11.4517 −0.389369
\(866\) 6.39093 0.217173
\(867\) 7.74762 0.263123
\(868\) 0 0
\(869\) 14.6547 0.497128
\(870\) 40.8376 1.38452
\(871\) 21.8918 0.741777
\(872\) 12.9306 0.437886
\(873\) −19.4268 −0.657498
\(874\) −59.4544 −2.01107
\(875\) 0 0
\(876\) −3.15708 −0.106668
\(877\) −34.1440 −1.15296 −0.576480 0.817111i \(-0.695574\pi\)
−0.576480 + 0.817111i \(0.695574\pi\)
\(878\) 25.5914 0.863669
\(879\) 9.06933 0.305901
\(880\) 35.9205 1.21088
\(881\) 25.0315 0.843334 0.421667 0.906751i \(-0.361445\pi\)
0.421667 + 0.906751i \(0.361445\pi\)
\(882\) 0 0
\(883\) −20.9210 −0.704047 −0.352024 0.935991i \(-0.614506\pi\)
−0.352024 + 0.935991i \(0.614506\pi\)
\(884\) −23.4633 −0.789158
\(885\) −7.23746 −0.243285
\(886\) 62.3365 2.09424
\(887\) 10.7698 0.361616 0.180808 0.983518i \(-0.442129\pi\)
0.180808 + 0.983518i \(0.442129\pi\)
\(888\) 6.33829 0.212699
\(889\) 0 0
\(890\) 9.75345 0.326936
\(891\) 3.12497 0.104690
\(892\) −2.75532 −0.0922548
\(893\) 6.62705 0.221766
\(894\) 20.1516 0.673972
\(895\) −13.5705 −0.453610
\(896\) 0 0
\(897\) 25.6097 0.855082
\(898\) −0.290980 −0.00971014
\(899\) −27.7575 −0.925764
\(900\) 1.47359 0.0491196
\(901\) −3.06840 −0.102223
\(902\) 25.5355 0.850239
\(903\) 0 0
\(904\) −5.24107 −0.174315
\(905\) −49.3314 −1.63983
\(906\) −4.68806 −0.155750
\(907\) 17.2959 0.574300 0.287150 0.957886i \(-0.407292\pi\)
0.287150 + 0.957886i \(0.407292\pi\)
\(908\) −8.30242 −0.275526
\(909\) 13.3576 0.443042
\(910\) 0 0
\(911\) −14.7576 −0.488942 −0.244471 0.969657i \(-0.578614\pi\)
−0.244471 + 0.969657i \(0.578614\pi\)
\(912\) −17.8101 −0.589752
\(913\) −38.2111 −1.26460
\(914\) 45.6133 1.50875
\(915\) 19.8310 0.655594
\(916\) 41.5438 1.37265
\(917\) 0 0
\(918\) 9.35861 0.308880
\(919\) 57.3976 1.89337 0.946687 0.322156i \(-0.104407\pi\)
0.946687 + 0.322156i \(0.104407\pi\)
\(920\) −17.6868 −0.583117
\(921\) −5.34057 −0.175978
\(922\) −32.9939 −1.08660
\(923\) 30.7051 1.01067
\(924\) 0 0
\(925\) −6.99857 −0.230112
\(926\) −63.5520 −2.08845
\(927\) −11.8996 −0.390833
\(928\) 63.3705 2.08024
\(929\) −7.63146 −0.250380 −0.125190 0.992133i \(-0.539954\pi\)
−0.125190 + 0.992133i \(0.539954\pi\)
\(930\) −14.3308 −0.469925
\(931\) 0 0
\(932\) −7.27100 −0.238170
\(933\) −12.7374 −0.417003
\(934\) −23.3523 −0.764110
\(935\) −37.9440 −1.24090
\(936\) 2.65733 0.0868576
\(937\) 16.7284 0.546491 0.273246 0.961944i \(-0.411903\pi\)
0.273246 + 0.961944i \(0.411903\pi\)
\(938\) 0 0
\(939\) −0.185603 −0.00605693
\(940\) −6.58275 −0.214706
\(941\) 15.2258 0.496347 0.248173 0.968716i \(-0.420170\pi\)
0.248173 + 0.968716i \(0.420170\pi\)
\(942\) −20.0872 −0.654478
\(943\) −36.2988 −1.18205
\(944\) −13.9644 −0.454502
\(945\) 0 0
\(946\) 24.3586 0.791965
\(947\) −41.1178 −1.33615 −0.668074 0.744095i \(-0.732881\pi\)
−0.668074 + 0.744095i \(0.732881\pi\)
\(948\) 7.21757 0.234416
\(949\) 6.28626 0.204061
\(950\) 6.81182 0.221005
\(951\) −2.09076 −0.0677976
\(952\) 0 0
\(953\) −15.7632 −0.510619 −0.255309 0.966859i \(-0.582177\pi\)
−0.255309 + 0.966859i \(0.582177\pi\)
\(954\) −1.16035 −0.0375678
\(955\) 28.2295 0.913486
\(956\) 17.0166 0.550357
\(957\) −27.7927 −0.898410
\(958\) 45.5690 1.47227
\(959\) 0 0
\(960\) 9.72792 0.313967
\(961\) −21.2593 −0.685784
\(962\) 42.1406 1.35867
\(963\) −9.20277 −0.296555
\(964\) −17.0012 −0.547573
\(965\) −7.85819 −0.252964
\(966\) 0 0
\(967\) −40.4050 −1.29934 −0.649669 0.760217i \(-0.725093\pi\)
−0.649669 + 0.760217i \(0.725093\pi\)
\(968\) 1.07053 0.0344082
\(969\) 18.8134 0.604374
\(970\) 89.2023 2.86411
\(971\) 54.8703 1.76087 0.880435 0.474166i \(-0.157250\pi\)
0.880435 + 0.474166i \(0.157250\pi\)
\(972\) 1.53907 0.0493657
\(973\) 0 0
\(974\) −31.1991 −0.999683
\(975\) −2.93416 −0.0939682
\(976\) 38.2632 1.22478
\(977\) 25.6340 0.820103 0.410052 0.912062i \(-0.365511\pi\)
0.410052 + 0.912062i \(0.365511\pi\)
\(978\) 38.3927 1.22766
\(979\) −6.63787 −0.212147
\(980\) 0 0
\(981\) −14.9121 −0.476106
\(982\) 36.8974 1.17744
\(983\) 31.7721 1.01337 0.506687 0.862130i \(-0.330870\pi\)
0.506687 + 0.862130i \(0.330870\pi\)
\(984\) −3.76647 −0.120071
\(985\) 41.5475 1.32381
\(986\) −83.2331 −2.65068
\(987\) 0 0
\(988\) −17.8371 −0.567473
\(989\) −34.6258 −1.10104
\(990\) −14.3490 −0.456040
\(991\) −34.1030 −1.08332 −0.541659 0.840598i \(-0.682204\pi\)
−0.541659 + 0.840598i \(0.682204\pi\)
\(992\) −22.2381 −0.706059
\(993\) 5.86784 0.186210
\(994\) 0 0
\(995\) −57.0729 −1.80933
\(996\) −18.8193 −0.596311
\(997\) −30.5373 −0.967127 −0.483564 0.875309i \(-0.660658\pi\)
−0.483564 + 0.875309i \(0.660658\pi\)
\(998\) −8.69228 −0.275149
\(999\) −7.30956 −0.231264
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7203.2.a.k.1.21 24
7.6 odd 2 7203.2.a.i.1.21 24
49.12 odd 42 147.2.m.a.46.4 yes 48
49.45 odd 42 147.2.m.a.16.4 48
147.110 even 42 441.2.bb.c.46.1 48
147.143 even 42 441.2.bb.c.163.1 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
147.2.m.a.16.4 48 49.45 odd 42
147.2.m.a.46.4 yes 48 49.12 odd 42
441.2.bb.c.46.1 48 147.110 even 42
441.2.bb.c.163.1 48 147.143 even 42
7203.2.a.i.1.21 24 7.6 odd 2
7203.2.a.k.1.21 24 1.1 even 1 trivial