| L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + (0.419 + 0.242i)5-s + (4.37 − 2.52i)7-s + 0.999i·8-s − 0.484·10-s + (2.78 − 1.60i)11-s + (−0.722 + 3.53i)13-s + (−2.52 + 4.37i)14-s + (−0.5 − 0.866i)16-s − 4.20·17-s − 3.21i·19-s + (0.419 − 0.242i)20-s + (−1.60 + 2.78i)22-s + (3.13 − 5.43i)23-s + ⋯ |
| L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.249 − 0.433i)4-s + (0.187 + 0.108i)5-s + (1.65 − 0.955i)7-s + 0.353i·8-s − 0.153·10-s + (0.838 − 0.484i)11-s + (−0.200 + 0.979i)13-s + (−0.675 + 1.16i)14-s + (−0.125 − 0.216i)16-s − 1.01·17-s − 0.736i·19-s + (0.0937 − 0.0541i)20-s + (−0.342 + 0.592i)22-s + (0.653 − 1.13i)23-s + ⋯ |
Λ(s)=(=(702s/2ΓC(s)L(s)(0.970+0.241i)Λ(2−s)
Λ(s)=(=(702s/2ΓC(s+1/2)L(s)(0.970+0.241i)Λ(1−s)
| Degree: |
2 |
| Conductor: |
702
= 2⋅33⋅13
|
| Sign: |
0.970+0.241i
|
| Analytic conductor: |
5.60549 |
| Root analytic conductor: |
2.36759 |
| Motivic weight: |
1 |
| Rational: |
no |
| Arithmetic: |
yes |
| Character: |
χ702(415,⋅)
|
| Primitive: |
yes
|
| Self-dual: |
no
|
| Analytic rank: |
0
|
| Selberg data: |
(2, 702, ( :1/2), 0.970+0.241i)
|
Particular Values
| L(1) |
≈ |
1.39268−0.170709i |
| L(21) |
≈ |
1.39268−0.170709i |
| L(23) |
|
not available |
| L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
|---|
| bad | 2 | 1+(0.866−0.5i)T |
| 3 | 1 |
| 13 | 1+(0.722−3.53i)T |
| good | 5 | 1+(−0.419−0.242i)T+(2.5+4.33i)T2 |
| 7 | 1+(−4.37+2.52i)T+(3.5−6.06i)T2 |
| 11 | 1+(−2.78+1.60i)T+(5.5−9.52i)T2 |
| 17 | 1+4.20T+17T2 |
| 19 | 1+3.21iT−19T2 |
| 23 | 1+(−3.13+5.43i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−2.29−3.97i)T+(−14.5+25.1i)T2 |
| 31 | 1+(5.61+3.24i)T+(15.5+26.8i)T2 |
| 37 | 1−2.08iT−37T2 |
| 41 | 1+(−9.57−5.52i)T+(20.5+35.5i)T2 |
| 43 | 1+(−4.73−8.19i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−4.57+2.64i)T+(23.5−40.7i)T2 |
| 53 | 1+6.41T+53T2 |
| 59 | 1+(3.13+1.81i)T+(29.5+51.0i)T2 |
| 61 | 1+(−0.500−0.867i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−0.936−0.540i)T+(33.5+58.0i)T2 |
| 71 | 1−4.63iT−71T2 |
| 73 | 1−0.325iT−73T2 |
| 79 | 1+(−3.91−6.78i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−5.08+2.93i)T+(41.5−71.8i)T2 |
| 89 | 1+8.42iT−89T2 |
| 97 | 1+(−11.3+6.52i)T+(48.5−84.0i)T2 |
| show more | |
| show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.55115825042285957301219495649, −9.317669205473576912685329994291, −8.723665841064165268165160527011, −7.83113947902049636025934728816, −6.97490644492772586255266064848, −6.26055491307034449638073056835, −4.78215110319945908896926000317, −4.23900068862688850853186852712, −2.27243999679749392414225407402, −1.06049422694143909365559047265,
1.47047293553300652548019968994, 2.34704882453362132474654478047, 3.90782589901344218958458761530, 5.09583940665502503909231224207, 5.88972106993174284694283563866, 7.35609883921442050883427732217, 7.931378990562882695114888169486, 8.999952480688752053747129538529, 9.312170843855763427243031679413, 10.67004961405840192959325130697