Properties

Label 2-7-7.6-c18-0-4
Degree $2$
Conductor $7$
Sign $1$
Analytic cond. $14.3770$
Root an. cond. $3.79170$
Motivic weight $18$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 999·2-s + 7.35e5·4-s − 4.03e7·7-s − 4.73e8·8-s + 3.87e8·9-s − 2.87e9·11-s + 4.03e10·14-s + 2.79e11·16-s − 3.87e11·18-s + 2.87e12·22-s − 1.65e12·23-s + 3.81e12·25-s − 2.96e13·28-s + 2.83e13·29-s − 1.55e14·32-s + 2.85e14·36-s + 2.57e14·37-s + 3.71e14·43-s − 2.11e15·44-s + 1.65e15·46-s + 1.62e15·49-s − 3.81e15·50-s − 3.22e15·53-s + 1.90e16·56-s − 2.82e16·58-s − 1.56e16·63-s + 8.20e16·64-s + ⋯
L(s)  = 1  − 1.95·2-s + 2.80·4-s − 7-s − 3.52·8-s + 9-s − 1.21·11-s + 1.95·14-s + 4.07·16-s − 1.95·18-s + 2.37·22-s − 0.917·23-s + 25-s − 2.80·28-s + 1.95·29-s − 4.42·32-s + 2.80·36-s + 1.98·37-s + 0.738·43-s − 3.42·44-s + 1.79·46-s + 49-s − 1.95·50-s − 0.975·53-s + 3.52·56-s − 3.80·58-s − 63-s + 4.55·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(19-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7 ^{s/2} \, \Gamma_{\C}(s+9) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7\)
Sign: $1$
Analytic conductor: \(14.3770\)
Root analytic conductor: \(3.79170\)
Motivic weight: \(18\)
Rational: yes
Arithmetic: yes
Character: $\chi_{7} (6, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7,\ (\ :9),\ 1)\)

Particular Values

\(L(\frac{19}{2})\) \(\approx\) \(0.5902306649\)
\(L(\frac12)\) \(\approx\) \(0.5902306649\)
\(L(10)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + p^{9} T \)
good2 \( 1 + 999 T + p^{18} T^{2} \)
3 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
5 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
11 \( 1 + 2874798918 T + p^{18} T^{2} \)
13 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
17 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
19 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
23 \( 1 + 1653377641326 T + p^{18} T^{2} \)
29 \( 1 - 28312199721738 T + p^{18} T^{2} \)
31 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
37 \( 1 - 257341038312346 T + p^{18} T^{2} \)
41 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
43 \( 1 - 371356855294714 T + p^{18} T^{2} \)
47 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
53 \( 1 + 3220047777380166 T + p^{18} T^{2} \)
59 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
61 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
67 \( 1 - 14477358615829706 T + p^{18} T^{2} \)
71 \( 1 - 78927867169189362 T + p^{18} T^{2} \)
73 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
79 \( 1 - 124983776054130338 T + p^{18} T^{2} \)
83 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
89 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
97 \( ( 1 - p^{9} T )( 1 + p^{9} T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−18.01505793266917478210896988195, −16.33487990209612522573481966410, −15.62178929387563688808090427976, −12.54571710415383089787335611487, −10.57279449621587018049705268186, −9.630675643764077406567311149828, −7.939578229223884769462860996852, −6.53561299337365954653444027232, −2.61550544577775513203566639916, −0.74533714115285948243811451094, 0.74533714115285948243811451094, 2.61550544577775513203566639916, 6.53561299337365954653444027232, 7.939578229223884769462860996852, 9.630675643764077406567311149828, 10.57279449621587018049705268186, 12.54571710415383089787335611487, 15.62178929387563688808090427976, 16.33487990209612522573481966410, 18.01505793266917478210896988195

Graph of the $Z$-function along the critical line