Properties

Label 7.19.b.a.6.1
Level $7$
Weight $19$
Character 7.6
Self dual yes
Analytic conductor $14.377$
Analytic rank $0$
Dimension $1$
CM discriminant -7
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7,19,Mod(6,7)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7.6"); S:= CuspForms(chi, 19); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 19, names="a")
 
Level: \( N \) \(=\) \( 7 \)
Weight: \( k \) \(=\) \( 19 \)
Character orbit: \([\chi]\) \(=\) 7.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.3770296397\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 6.1
Character \(\chi\) \(=\) 7.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-999.000 q^{2} +735857. q^{4} -4.03536e7 q^{7} -4.73239e8 q^{8} +3.87420e8 q^{9} -2.87480e9 q^{11} +4.03133e10 q^{14} +2.79866e11 q^{16} -3.87033e11 q^{18} +2.87192e12 q^{22} -1.65338e12 q^{23} +3.81470e12 q^{25} -2.96945e13 q^{28} +2.83122e13 q^{29} -1.55529e14 q^{32} +2.85086e14 q^{36} +2.57341e14 q^{37} +3.71357e14 q^{43} -2.11544e15 q^{44} +1.65172e15 q^{46} +1.62841e15 q^{49} -3.81088e15 q^{50} -3.22005e15 q^{53} +1.90969e16 q^{56} -2.82839e16 q^{58} -1.56338e16 q^{63} +8.20082e16 q^{64} +1.44774e16 q^{67} +7.89279e16 q^{71} -1.83343e17 q^{72} -2.57084e17 q^{74} +1.16009e17 q^{77} +1.24984e17 q^{79} +1.50095e17 q^{81} -3.70985e17 q^{86} +1.36047e18 q^{88} -1.21665e18 q^{92} -1.62679e18 q^{98} -1.11376e18 q^{99} +O(q^{100})\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/7\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −999.000 −1.95117 −0.975586 0.219618i \(-0.929519\pi\)
−0.975586 + 0.219618i \(0.929519\pi\)
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) 735857. 2.80707
\(5\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(6\) 0 0
\(7\) −4.03536e7 −1.00000
\(8\) −4.73239e8 −3.52591
\(9\) 3.87420e8 1.00000
\(10\) 0 0
\(11\) −2.87480e9 −1.21920 −0.609598 0.792711i \(-0.708669\pi\)
−0.609598 + 0.792711i \(0.708669\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 4.03133e10 1.95117
\(15\) 0 0
\(16\) 2.79866e11 4.07258
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) −3.87033e11 −1.95117
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 2.87192e12 2.37886
\(23\) −1.65338e12 −0.917955 −0.458978 0.888448i \(-0.651784\pi\)
−0.458978 + 0.888448i \(0.651784\pi\)
\(24\) 0 0
\(25\) 3.81470e12 1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) −2.96945e13 −2.80707
\(29\) 2.83122e13 1.95160 0.975802 0.218657i \(-0.0701675\pi\)
0.975802 + 0.218657i \(0.0701675\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) −1.55529e14 −4.42040
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 2.85086e14 2.80707
\(37\) 2.57341e14 1.98013 0.990065 0.140613i \(-0.0449074\pi\)
0.990065 + 0.140613i \(0.0449074\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 3.71357e14 0.738882 0.369441 0.929254i \(-0.379549\pi\)
0.369441 + 0.929254i \(0.379549\pi\)
\(44\) −2.11544e15 −3.42237
\(45\) 0 0
\(46\) 1.65172e15 1.79109
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) 1.62841e15 1.00000
\(50\) −3.81088e15 −1.95117
\(51\) 0 0
\(52\) 0 0
\(53\) −3.22005e15 −0.975842 −0.487921 0.872888i \(-0.662245\pi\)
−0.487921 + 0.872888i \(0.662245\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 1.90969e16 3.52591
\(57\) 0 0
\(58\) −2.82839e16 −3.80791
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) −1.56338e16 −1.00000
\(64\) 8.20082e16 4.55237
\(65\) 0 0
\(66\) 0 0
\(67\) 1.44774e16 0.532128 0.266064 0.963955i \(-0.414277\pi\)
0.266064 + 0.963955i \(0.414277\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.89279e16 1.72149 0.860746 0.509034i \(-0.169997\pi\)
0.860746 + 0.509034i \(0.169997\pi\)
\(72\) −1.83343e17 −3.52591
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) −2.57084e17 −3.86357
\(75\) 0 0
\(76\) 0 0
\(77\) 1.16009e17 1.21920
\(78\) 0 0
\(79\) 1.24984e17 1.04282 0.521411 0.853306i \(-0.325406\pi\)
0.521411 + 0.853306i \(0.325406\pi\)
\(80\) 0 0
\(81\) 1.50095e17 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −3.70985e17 −1.44169
\(87\) 0 0
\(88\) 1.36047e18 4.29877
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −1.21665e18 −2.57677
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) −1.62679e18 −1.95117
\(99\) −1.11376e18 −1.21920
\(100\) 2.80707e18 2.80707
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 3.21683e18 1.90404
\(107\) −2.08415e17 −0.113364 −0.0566820 0.998392i \(-0.518052\pi\)
−0.0566820 + 0.998392i \(0.518052\pi\)
\(108\) 0 0
\(109\) −4.29984e18 −1.97977 −0.989883 0.141889i \(-0.954682\pi\)
−0.989883 + 0.141889i \(0.954682\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1.12936e19 −4.07258
\(113\) 7.49108e17 0.249367 0.124683 0.992197i \(-0.460208\pi\)
0.124683 + 0.992197i \(0.460208\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 2.08337e19 5.47829
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 2.70455e18 0.486437
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 1.56182e19 1.95117
\(127\) 1.21715e18 0.141615 0.0708076 0.997490i \(-0.477442\pi\)
0.0708076 + 0.997490i \(0.477442\pi\)
\(128\) −4.11553e19 −4.46206
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −1.44629e19 −1.03827
\(135\) 0 0
\(136\) 0 0
\(137\) 3.07927e18 0.181118 0.0905592 0.995891i \(-0.471135\pi\)
0.0905592 + 0.995891i \(0.471135\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −7.88489e19 −3.35893
\(143\) 0 0
\(144\) 1.08426e20 4.07258
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 1.89366e20 5.55836
\(149\) −1.55633e19 −0.429956 −0.214978 0.976619i \(-0.568968\pi\)
−0.214978 + 0.976619i \(0.568968\pi\)
\(150\) 0 0
\(151\) −5.89087e19 −1.44340 −0.721700 0.692206i \(-0.756639\pi\)
−0.721700 + 0.692206i \(0.756639\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −1.15892e20 −2.37886
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) −1.24859e20 −2.03472
\(159\) 0 0
\(160\) 0 0
\(161\) 6.67198e19 0.917955
\(162\) −1.49945e20 −1.95117
\(163\) 1.43326e20 1.76456 0.882280 0.470725i \(-0.156008\pi\)
0.882280 + 0.470725i \(0.156008\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 1.12455e20 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 2.73266e20 2.07410
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) −1.53937e20 −1.00000
\(176\) −8.04557e20 −4.96527
\(177\) 0 0
\(178\) 0 0
\(179\) 3.41266e20 1.80890 0.904452 0.426575i \(-0.140280\pi\)
0.904452 + 0.426575i \(0.140280\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 7.82443e20 3.23663
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −3.66805e20 −1.08426 −0.542131 0.840294i \(-0.682382\pi\)
−0.542131 + 0.840294i \(0.682382\pi\)
\(192\) 0 0
\(193\) −7.37850e20 −1.98588 −0.992938 0.118631i \(-0.962149\pi\)
−0.992938 + 0.118631i \(0.962149\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 1.19828e21 2.80707
\(197\) 6.97837e20 1.56156 0.780779 0.624807i \(-0.214822\pi\)
0.780779 + 0.624807i \(0.214822\pi\)
\(198\) 1.11264e21 2.37886
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) −1.80526e21 −3.52591
\(201\) 0 0
\(202\) 0 0
\(203\) −1.14250e21 −1.95160
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −6.40552e20 −0.917955
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −3.12195e20 −0.376603 −0.188301 0.982111i \(-0.560298\pi\)
−0.188301 + 0.982111i \(0.560298\pi\)
\(212\) −2.36949e21 −2.73926
\(213\) 0 0
\(214\) 2.08207e20 0.221193
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 4.29554e21 3.86286
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 6.27615e21 4.42040
\(225\) 1.47789e21 1.00000
\(226\) −7.48359e20 −0.486557
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −1.33984e22 −6.88117
\(233\) 1.37938e21 0.681522 0.340761 0.940150i \(-0.389315\pi\)
0.340761 + 0.940150i \(0.389315\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 4.75276e21 1.86795 0.933974 0.357340i \(-0.116316\pi\)
0.933974 + 0.357340i \(0.116316\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) −2.70185e21 −0.949123
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) −1.15043e22 −2.80707
\(253\) 4.75313e21 1.11917
\(254\) −1.21593e21 −0.276315
\(255\) 0 0
\(256\) 1.96162e22 4.15388
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) −1.03846e22 −1.98013
\(260\) 0 0
\(261\) 1.09687e22 1.95160
\(262\) 0 0
\(263\) −1.18193e22 −1.96332 −0.981660 0.190641i \(-0.938943\pi\)
−0.981660 + 0.190641i \(0.938943\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 1.06533e22 1.49372
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −3.07619e21 −0.353393
\(275\) −1.09665e22 −1.21920
\(276\) 0 0
\(277\) −1.35047e22 −1.40659 −0.703294 0.710899i \(-0.748288\pi\)
−0.703294 + 0.710899i \(0.748288\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2.10693e22 1.92883 0.964413 0.264402i \(-0.0851746\pi\)
0.964413 + 0.264402i \(0.0851746\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 5.80796e22 4.83235
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −6.02551e22 −4.42040
\(289\) 1.40631e22 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −1.21784e23 −6.98175
\(297\) 0 0
\(298\) 1.55477e22 0.838919
\(299\) 0 0
\(300\) 0 0
\(301\) −1.49856e22 −0.738882
\(302\) 5.88498e22 2.81632
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 8.53657e22 3.42237
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 9.19702e22 2.92727
\(317\) 4.25936e22 1.31768 0.658841 0.752282i \(-0.271047\pi\)
0.658841 + 0.752282i \(0.271047\pi\)
\(318\) 0 0
\(319\) −8.13919e22 −2.37939
\(320\) 0 0
\(321\) 0 0
\(322\) −6.66530e22 −1.79109
\(323\) 0 0
\(324\) 1.10448e23 2.80707
\(325\) 0 0
\(326\) −1.43183e23 −3.44296
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −8.30296e22 −1.74093 −0.870464 0.492232i \(-0.836181\pi\)
−0.870464 + 0.492232i \(0.836181\pi\)
\(332\) 0 0
\(333\) 9.96992e22 1.98013
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 7.18999e21 0.128251 0.0641253 0.997942i \(-0.479574\pi\)
0.0641253 + 0.997942i \(0.479574\pi\)
\(338\) −1.12343e23 −1.95117
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −6.57124e22 −1.00000
\(344\) −1.75741e23 −2.60523
\(345\) 0 0
\(346\) 0 0
\(347\) 5.21422e22 0.714865 0.357432 0.933939i \(-0.383652\pi\)
0.357432 + 0.933939i \(0.383652\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 1.53783e23 1.95117
\(351\) 0 0
\(352\) 4.47114e23 5.38933
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −3.40925e23 −3.52948
\(359\) 1.53131e23 1.54601 0.773006 0.634399i \(-0.218752\pi\)
0.773006 + 0.634399i \(0.218752\pi\)
\(360\) 0 0
\(361\) 1.04127e23 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) −4.62723e23 −3.73845
\(369\) 0 0
\(370\) 0 0
\(371\) 1.29941e23 0.975842
\(372\) 0 0
\(373\) 2.46051e22 0.176054 0.0880270 0.996118i \(-0.471944\pi\)
0.0880270 + 0.996118i \(0.471944\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −2.58094e23 −1.59965 −0.799825 0.600233i \(-0.795075\pi\)
−0.799825 + 0.600233i \(0.795075\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 3.66438e23 2.11558
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 7.37112e23 3.87479
\(387\) 1.43871e23 0.738882
\(388\) 0 0
\(389\) 7.17145e22 0.351609 0.175805 0.984425i \(-0.443747\pi\)
0.175805 + 0.984425i \(0.443747\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −7.70629e23 −3.52591
\(393\) 0 0
\(394\) −6.97140e23 −3.04687
\(395\) 0 0
\(396\) −8.19565e23 −3.42237
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 1.06760e24 4.07258
\(401\) −4.43152e23 −1.65293 −0.826464 0.562990i \(-0.809651\pi\)
−0.826464 + 0.562990i \(0.809651\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 1.14136e24 3.80791
\(407\) −7.39804e23 −2.41416
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 6.39912e23 1.79109
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) −8.11763e23 −1.95385 −0.976923 0.213592i \(-0.931484\pi\)
−0.976923 + 0.213592i \(0.931484\pi\)
\(422\) 3.11883e23 0.734817
\(423\) 0 0
\(424\) 1.52385e24 3.44073
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −1.53364e23 −0.318221
\(429\) 0 0
\(430\) 0 0
\(431\) 1.01766e24 1.98293 0.991466 0.130365i \(-0.0416150\pi\)
0.991466 + 0.130365i \(0.0416150\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −3.16407e24 −5.55734
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 6.30881e23 1.00000
\(442\) 0 0
\(443\) 1.14498e24 1.74247 0.871234 0.490869i \(-0.163321\pi\)
0.871234 + 0.490869i \(0.163321\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −3.30933e24 −4.55237
\(449\) −9.79230e23 −1.32028 −0.660142 0.751141i \(-0.729504\pi\)
−0.660142 + 0.751141i \(0.729504\pi\)
\(450\) −1.47641e24 −1.95117
\(451\) 0 0
\(452\) 5.51237e23 0.699990
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1.42806e24 1.64248 0.821241 0.570582i \(-0.193282\pi\)
0.821241 + 0.570582i \(0.193282\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 1.69974e24 1.73842 0.869210 0.494444i \(-0.164628\pi\)
0.869210 + 0.494444i \(0.164628\pi\)
\(464\) 7.92361e24 7.94806
\(465\) 0 0
\(466\) −1.37800e24 −1.32977
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) −5.84214e23 −0.532128
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1.06758e24 −0.900842
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −1.24751e24 −0.975842
\(478\) −4.74801e24 −3.64469
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 1.99016e24 1.36546
\(485\) 0 0
\(486\) 0 0
\(487\) 1.85745e24 1.20547 0.602734 0.797942i \(-0.294078\pi\)
0.602734 + 0.797942i \(0.294078\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −1.82775e24 −1.10200 −0.551001 0.834505i \(-0.685754\pi\)
−0.551001 + 0.834505i \(0.685754\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −3.18502e24 −1.72149
\(498\) 0 0
\(499\) 1.53837e24 0.801968 0.400984 0.916085i \(-0.368668\pi\)
0.400984 + 0.916085i \(0.368668\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 7.39854e24 3.52591
\(505\) 0 0
\(506\) −4.74838e24 −2.18369
\(507\) 0 0
\(508\) 8.95646e23 0.397524
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −8.80793e24 −3.64287
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 1.03743e25 3.86357
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) −1.09578e25 −3.80791
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 1.18075e25 3.83077
\(527\) 0 0
\(528\) 0 0
\(529\) −5.10493e23 −0.157358
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) −6.85125e24 −1.87623
\(537\) 0 0
\(538\) 0 0
\(539\) −4.68136e24 −1.21920
\(540\) 0 0
\(541\) 4.58742e24 1.15556 0.577781 0.816192i \(-0.303919\pi\)
0.577781 + 0.816192i \(0.303919\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 8.75705e24 1.99743 0.998715 0.0506691i \(-0.0161354\pi\)
0.998715 + 0.0506691i \(0.0161354\pi\)
\(548\) 2.26590e24 0.508412
\(549\) 0 0
\(550\) 1.09555e25 2.37886
\(551\) 0 0
\(552\) 0 0
\(553\) −5.04355e24 −1.04282
\(554\) 1.34912e25 2.74450
\(555\) 0 0
\(556\) 0 0
\(557\) −6.18061e24 −1.19766 −0.598831 0.800875i \(-0.704368\pi\)
−0.598831 + 0.800875i \(0.704368\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −2.10482e25 −3.76347
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −6.05686e24 −1.00000
\(568\) −3.73518e25 −6.06982
\(569\) 8.73236e24 1.39676 0.698379 0.715728i \(-0.253905\pi\)
0.698379 + 0.715728i \(0.253905\pi\)
\(570\) 0 0
\(571\) −8.05757e23 −0.124876 −0.0624380 0.998049i \(-0.519888\pi\)
−0.0624380 + 0.998049i \(0.519888\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −6.30714e24 −0.917955
\(576\) 3.17717e25 4.55237
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −1.40490e25 −1.95117
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 9.25699e24 1.18974
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 7.20209e25 8.06423
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.14523e25 −1.20692
\(597\) 0 0
\(598\) 0 0
\(599\) −1.91929e25 −1.93330 −0.966652 0.256092i \(-0.917565\pi\)
−0.966652 + 0.256092i \(0.917565\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 1.49706e25 1.44169
\(603\) 5.60883e24 0.532128
\(604\) −4.33484e25 −4.05173
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 2.44264e25 1.99855 0.999275 0.0380762i \(-0.0121230\pi\)
0.999275 + 0.0380762i \(0.0121230\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) −5.48998e25 −4.29877
\(617\) 2.28749e25 1.76520 0.882598 0.470129i \(-0.155792\pi\)
0.882598 + 0.470129i \(0.155792\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.45519e25 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −2.85731e25 −1.80175 −0.900873 0.434084i \(-0.857072\pi\)
−0.900873 + 0.434084i \(0.857072\pi\)
\(632\) −5.91472e25 −3.67689
\(633\) 0 0
\(634\) −4.25510e25 −2.57102
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 8.13105e25 4.64259
\(639\) 3.05783e25 1.72149
\(640\) 0 0
\(641\) 3.34019e24 0.182831 0.0914154 0.995813i \(-0.470861\pi\)
0.0914154 + 0.995813i \(0.470861\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 4.90962e25 2.57677
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) −7.10307e25 −3.52591
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 1.05467e26 4.95325
\(653\) −3.53183e25 −1.63599 −0.817996 0.575223i \(-0.804915\pi\)
−0.817996 + 0.575223i \(0.804915\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −4.45004e25 −1.89843 −0.949216 0.314626i \(-0.898121\pi\)
−0.949216 + 0.314626i \(0.898121\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 8.29465e25 3.39685
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −9.95995e25 −3.86357
\(667\) −4.68108e25 −1.79148
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −5.76590e24 −0.203578 −0.101789 0.994806i \(-0.532457\pi\)
−0.101789 + 0.994806i \(0.532457\pi\)
\(674\) −7.18280e24 −0.250239
\(675\) 0 0
\(676\) 8.27511e25 2.80707
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.62916e25 −0.503706 −0.251853 0.967766i \(-0.581040\pi\)
−0.251853 + 0.967766i \(0.581040\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 6.56467e25 1.95117
\(687\) 0 0
\(688\) 1.03930e26 3.00916
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) 4.49441e25 1.21920
\(694\) −5.20900e25 −1.39482
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −1.13275e26 −2.80707
\(701\) −6.35666e25 −1.55513 −0.777565 0.628803i \(-0.783545\pi\)
−0.777565 + 0.628803i \(0.783545\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −2.35757e26 −5.55023
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 4.03198e25 0.890640 0.445320 0.895372i \(-0.353090\pi\)
0.445320 + 0.895372i \(0.353090\pi\)
\(710\) 0 0
\(711\) 4.84213e25 1.04282
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 2.51123e26 5.07772
\(717\) 0 0
\(718\) −1.52978e26 −3.01654
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −1.04023e26 −1.95117
\(723\) 0 0
\(724\) 0 0
\(725\) 1.08002e26 1.95160
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 5.81497e25 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 2.57148e26 4.05773
\(737\) −4.16195e25 −0.648768
\(738\) 0 0
\(739\) 7.64836e25 1.16351 0.581753 0.813366i \(-0.302367\pi\)
0.581753 + 0.813366i \(0.302367\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −1.29811e26 −1.90404
\(743\) 8.79718e25 1.27481 0.637403 0.770531i \(-0.280009\pi\)
0.637403 + 0.770531i \(0.280009\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −2.45805e25 −0.343512
\(747\) 0 0
\(748\) 0 0
\(749\) 8.41030e24 0.113364
\(750\) 0 0
\(751\) −1.42396e26 −1.87386 −0.936932 0.349512i \(-0.886347\pi\)
−0.936932 + 0.349512i \(0.886347\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −1.53814e26 −1.88422 −0.942111 0.335301i \(-0.891162\pi\)
−0.942111 + 0.335301i \(0.891162\pi\)
\(758\) 2.57836e26 3.12119
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 1.73514e26 1.97977
\(764\) −2.69916e26 −3.04360
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −5.42952e26 −5.57450
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) −1.43727e26 −1.44169
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −7.16428e25 −0.686050
\(779\) 0 0
\(780\) 0 0
\(781\) −2.26902e26 −2.09884
\(782\) 0 0
\(783\) 0 0
\(784\) 4.55737e26 4.07258
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 5.13509e26 4.38341
\(789\) 0 0
\(790\) 0 0
\(791\) −3.02292e25 −0.249367
\(792\) 5.27073e26 4.29877
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −5.93295e26 −4.42040
\(801\) 0 0
\(802\) 4.42709e26 3.22515
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −2.44840e26 −1.64947 −0.824737 0.565517i \(-0.808677\pi\)
−0.824737 + 0.565517i \(0.808677\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) −8.40716e26 −5.47829
\(813\) 0 0
\(814\) 7.39064e26 4.71045
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −2.33903e26 −1.38022 −0.690108 0.723707i \(-0.742437\pi\)
−0.690108 + 0.723707i \(0.742437\pi\)
\(822\) 0 0
\(823\) 1.17495e26 0.678299 0.339149 0.940733i \(-0.389861\pi\)
0.339149 + 0.940733i \(0.389861\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 3.61742e26 1.99917 0.999585 0.0287973i \(-0.00916774\pi\)
0.999585 + 0.0287973i \(0.00916774\pi\)
\(828\) −4.71355e26 −2.57677
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 5.91123e26 2.80876
\(842\) 8.10951e26 3.81229
\(843\) 0 0
\(844\) −2.29731e26 −1.05715
\(845\) 0 0
\(846\) 0 0
\(847\) −1.09138e26 −0.486437
\(848\) −9.01180e26 −3.97419
\(849\) 0 0
\(850\) 0 0
\(851\) −4.25482e26 −1.81767
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 9.86302e25 0.399711
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −1.01664e27 −3.86904
\(863\) 4.11903e26 1.55131 0.775653 0.631159i \(-0.217421\pi\)
0.775653 + 0.631159i \(0.217421\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −3.59303e26 −1.27140
\(870\) 0 0
\(871\) 0 0
\(872\) 2.03485e27 6.98047
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −4.45489e26 −1.45158 −0.725790 0.687916i \(-0.758526\pi\)
−0.725790 + 0.687916i \(0.758526\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) −6.30250e26 −1.95117
\(883\) 5.67006e26 1.73757 0.868783 0.495194i \(-0.164903\pi\)
0.868783 + 0.495194i \(0.164903\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −1.14384e27 −3.39985
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) −4.91163e25 −0.141615
\(890\) 0 0
\(891\) −4.31492e26 −1.21920
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 1.66076e27 4.46206
\(897\) 0 0
\(898\) 9.78251e26 2.57610
\(899\) 0 0
\(900\) 1.08752e27 2.80707
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −3.54507e26 −0.879244
\(905\) 0 0
\(906\) 0 0
\(907\) −1.04328e25 −0.0251152 −0.0125576 0.999921i \(-0.503997\pi\)
−0.0125576 + 0.999921i \(0.503997\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −1.00255e26 −0.231975 −0.115987 0.993251i \(-0.537003\pi\)
−0.115987 + 0.993251i \(0.537003\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −1.42663e27 −3.20476
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 6.92943e26 1.48203 0.741016 0.671487i \(-0.234344\pi\)
0.741016 + 0.671487i \(0.234344\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 9.81678e26 1.98013
\(926\) −1.69804e27 −3.39196
\(927\) 0 0
\(928\) −4.40336e27 −8.62686
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 1.01502e27 1.91308
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 5.83629e26 1.03827
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 1.06651e27 1.75770
\(947\) −1.16067e27 −1.89479 −0.947393 0.320072i \(-0.896293\pi\)
−0.947393 + 0.320072i \(0.896293\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1.29663e27 1.99977 0.999883 0.0152689i \(-0.00486043\pi\)
0.999883 + 0.0152689i \(0.00486043\pi\)
\(954\) 1.24626e27 1.90404
\(955\) 0 0
\(956\) 3.49735e27 5.24347
\(957\) 0 0
\(958\) 0 0
\(959\) −1.24260e26 −0.181118
\(960\) 0 0
\(961\) 6.99054e26 1.00000
\(962\) 0 0
\(963\) −8.07443e25 −0.113364
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −1.47860e27 −1.99992 −0.999962 0.00867290i \(-0.997239\pi\)
−0.999962 + 0.00867290i \(0.997239\pi\)
\(968\) −1.27990e27 −1.71513
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −1.85559e27 −2.35208
\(975\) 0 0
\(976\) 0 0
\(977\) 1.10215e27 1.35891 0.679455 0.733717i \(-0.262216\pi\)
0.679455 + 0.733717i \(0.262216\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −1.66585e27 −1.97977
\(982\) 1.82592e27 2.15019
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −6.13993e26 −0.678261
\(990\) 0 0
\(991\) −1.34100e27 −1.45468 −0.727338 0.686279i \(-0.759243\pi\)
−0.727338 + 0.686279i \(0.759243\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 3.18184e27 3.35893
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) −1.53684e27 −1.56478
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7.19.b.a.6.1 1
3.2 odd 2 63.19.d.a.55.1 1
7.6 odd 2 CM 7.19.b.a.6.1 1
21.20 even 2 63.19.d.a.55.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7.19.b.a.6.1 1 1.1 even 1 trivial
7.19.b.a.6.1 1 7.6 odd 2 CM
63.19.d.a.55.1 1 3.2 odd 2
63.19.d.a.55.1 1 21.20 even 2