L(s) = 1 | + (1.39 + 2.40i)2-s + (−2.86 + 4.96i)4-s + (0.412 + 0.715i)5-s + (2.63 + 0.257i)7-s − 10.3·8-s + (−1.14 + 1.98i)10-s + (−0.5 + 0.866i)11-s − 0.296·13-s + (3.04 + 6.70i)14-s + (−8.72 − 15.1i)16-s + (−3.34 + 5.79i)17-s + (1.41 + 2.45i)19-s − 4.73·20-s − 2.78·22-s + (−1.98 − 3.43i)23-s + ⋯ |
L(s) = 1 | + (0.983 + 1.70i)2-s + (−1.43 + 2.48i)4-s + (0.184 + 0.319i)5-s + (0.995 + 0.0971i)7-s − 3.67·8-s + (−0.363 + 0.629i)10-s + (−0.150 + 0.261i)11-s − 0.0823·13-s + (0.813 + 1.79i)14-s + (−2.18 − 3.77i)16-s + (−0.811 + 1.40i)17-s + (0.325 + 0.562i)19-s − 1.05·20-s − 0.593·22-s + (−0.413 − 0.716i)23-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)(−0.934+0.354i)Λ(2−s)
Λ(s)=(=(693s/2ΓC(s+1/2)L(s)(−0.934+0.354i)Λ(1−s)
Degree: |
2 |
Conductor: |
693
= 32⋅7⋅11
|
Sign: |
−0.934+0.354i
|
Analytic conductor: |
5.53363 |
Root analytic conductor: |
2.35236 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ693(298,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 693, ( :1/2), −0.934+0.354i)
|
Particular Values
L(1) |
≈ |
0.408783−2.22805i |
L(21) |
≈ |
0.408783−2.22805i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(−2.63−0.257i)T |
| 11 | 1+(0.5−0.866i)T |
good | 2 | 1+(−1.39−2.40i)T+(−1+1.73i)T2 |
| 5 | 1+(−0.412−0.715i)T+(−2.5+4.33i)T2 |
| 13 | 1+0.296T+13T2 |
| 17 | 1+(3.34−5.79i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−1.41−2.45i)T+(−9.5+16.4i)T2 |
| 23 | 1+(1.98+3.43i)T+(−11.5+19.9i)T2 |
| 29 | 1−0.484T+29T2 |
| 31 | 1+(−3.66+6.34i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−2.86−4.96i)T+(−18.5+32.0i)T2 |
| 41 | 1+0.645T+41T2 |
| 43 | 1−6.43T+43T2 |
| 47 | 1+(−3.86−6.70i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−3.55+6.16i)T+(−26.5−45.8i)T2 |
| 59 | 1+(0.578−1.00i)T+(−29.5−51.0i)T2 |
| 61 | 1+(2.63+4.56i)T+(−30.5+52.8i)T2 |
| 67 | 1+(1.50−2.61i)T+(−33.5−58.0i)T2 |
| 71 | 1+3.58T+71T2 |
| 73 | 1+(8.01−13.8i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−2.16−3.74i)T+(−39.5+68.4i)T2 |
| 83 | 1+2.37T+83T2 |
| 89 | 1+(−6.08−10.5i)T+(−44.5+77.0i)T2 |
| 97 | 1+10.7T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.11390394757734275769967758730, −9.896160185657778554299653381094, −8.588822972782976926706951653211, −8.185367181857123867884902036279, −7.32860099601726574321884091443, −6.33803480799238588702481836031, −5.77371767210510929930891657209, −4.60639343145168684996990703334, −4.08827073955024393522000824196, −2.54335474407397683004359898698,
0.920240972329514785461180459295, 2.14157014486405603342395612558, 3.15325825105246043716377920074, 4.43353051433278972174826423443, 5.00257846002199437642452315961, 5.80751172000778127262183021381, 7.28050172727516334823927558483, 8.837964587790223466385416977495, 9.268510863271673956782228430145, 10.37640468014159833524882417491