L(s) = 1 | + (1.39 − 2.40i)2-s + (−2.86 − 4.96i)4-s + (0.412 − 0.715i)5-s + (2.63 − 0.257i)7-s − 10.3·8-s + (−1.14 − 1.98i)10-s + (−0.5 − 0.866i)11-s − 0.296·13-s + (3.04 − 6.70i)14-s + (−8.72 + 15.1i)16-s + (−3.34 − 5.79i)17-s + (1.41 − 2.45i)19-s − 4.73·20-s − 2.78·22-s + (−1.98 + 3.43i)23-s + ⋯ |
L(s) = 1 | + (0.983 − 1.70i)2-s + (−1.43 − 2.48i)4-s + (0.184 − 0.319i)5-s + (0.995 − 0.0971i)7-s − 3.67·8-s + (−0.363 − 0.629i)10-s + (−0.150 − 0.261i)11-s − 0.0823·13-s + (0.813 − 1.79i)14-s + (−2.18 + 3.77i)16-s + (−0.811 − 1.40i)17-s + (0.325 − 0.562i)19-s − 1.05·20-s − 0.593·22-s + (−0.413 + 0.716i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.934 - 0.354i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.934 - 0.354i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.408783 + 2.22805i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.408783 + 2.22805i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-2.63 + 0.257i)T \) |
| 11 | \( 1 + (0.5 + 0.866i)T \) |
good | 2 | \( 1 + (-1.39 + 2.40i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (-0.412 + 0.715i)T + (-2.5 - 4.33i)T^{2} \) |
| 13 | \( 1 + 0.296T + 13T^{2} \) |
| 17 | \( 1 + (3.34 + 5.79i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.41 + 2.45i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.98 - 3.43i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 0.484T + 29T^{2} \) |
| 31 | \( 1 + (-3.66 - 6.34i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.86 + 4.96i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 0.645T + 41T^{2} \) |
| 43 | \( 1 - 6.43T + 43T^{2} \) |
| 47 | \( 1 + (-3.86 + 6.70i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-3.55 - 6.16i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (0.578 + 1.00i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (2.63 - 4.56i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (1.50 + 2.61i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 3.58T + 71T^{2} \) |
| 73 | \( 1 + (8.01 + 13.8i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-2.16 + 3.74i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 2.37T + 83T^{2} \) |
| 89 | \( 1 + (-6.08 + 10.5i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 10.7T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.37640468014159833524882417491, −9.268510863271673956782228430145, −8.837964587790223466385416977495, −7.28050172727516334823927558483, −5.80751172000778127262183021381, −5.00257846002199437642452315961, −4.43353051433278972174826423443, −3.15325825105246043716377920074, −2.14157014486405603342395612558, −0.920240972329514785461180459295,
2.54335474407397683004359898698, 4.08827073955024393522000824196, 4.60639343145168684996990703334, 5.77371767210510929930891657209, 6.33803480799238588702481836031, 7.32860099601726574321884091443, 8.185367181857123867884902036279, 8.588822972782976926706951653211, 9.896160185657778554299653381094, 11.11390394757734275769967758730