L(s) = 1 | + (−0.276 + 0.478i)2-s + (0.847 + 1.46i)4-s + (0.795 − 1.37i)5-s + (0.886 + 2.49i)7-s − 2.04·8-s + (0.439 + 0.760i)10-s + (−0.5 − 0.866i)11-s + 2.87·13-s + (−1.43 − 0.264i)14-s + (−1.13 + 1.95i)16-s + (2.41 + 4.18i)17-s + (0.572 − 0.992i)19-s + 2.69·20-s + 0.552·22-s + (−1.82 + 3.16i)23-s + ⋯ |
L(s) = 1 | + (−0.195 + 0.338i)2-s + (0.423 + 0.733i)4-s + (0.355 − 0.615i)5-s + (0.335 + 0.942i)7-s − 0.721·8-s + (0.138 + 0.240i)10-s + (−0.150 − 0.261i)11-s + 0.798·13-s + (−0.384 − 0.0706i)14-s + (−0.282 + 0.489i)16-s + (0.586 + 1.01i)17-s + (0.131 − 0.227i)19-s + 0.602·20-s + 0.117·22-s + (−0.380 + 0.659i)23-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)(0.118−0.992i)Λ(2−s)
Λ(s)=(=(693s/2ΓC(s+1/2)L(s)(0.118−0.992i)Λ(1−s)
Degree: |
2 |
Conductor: |
693
= 32⋅7⋅11
|
Sign: |
0.118−0.992i
|
Analytic conductor: |
5.53363 |
Root analytic conductor: |
2.35236 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ693(100,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 693, ( :1/2), 0.118−0.992i)
|
Particular Values
L(1) |
≈ |
1.20362+1.06888i |
L(21) |
≈ |
1.20362+1.06888i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(−0.886−2.49i)T |
| 11 | 1+(0.5+0.866i)T |
good | 2 | 1+(0.276−0.478i)T+(−1−1.73i)T2 |
| 5 | 1+(−0.795+1.37i)T+(−2.5−4.33i)T2 |
| 13 | 1−2.87T+13T2 |
| 17 | 1+(−2.41−4.18i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−0.572+0.992i)T+(−9.5−16.4i)T2 |
| 23 | 1+(1.82−3.16i)T+(−11.5−19.9i)T2 |
| 29 | 1−0.325T+29T2 |
| 31 | 1+(3.22+5.58i)T+(−15.5+26.8i)T2 |
| 37 | 1+(0.847−1.46i)T+(−18.5−32.0i)T2 |
| 41 | 1−4.05T+41T2 |
| 43 | 1−4.62T+43T2 |
| 47 | 1+(−0.152+0.264i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−2.85−4.94i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−5.93−10.2i)T+(−29.5+51.0i)T2 |
| 61 | 1+(0.886−1.53i)T+(−30.5−52.8i)T2 |
| 67 | 1+(7.63+13.2i)T+(−33.5+58.0i)T2 |
| 71 | 1+9.16T+71T2 |
| 73 | 1+(−5.86−10.1i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−4.35+7.54i)T+(−39.5−68.4i)T2 |
| 83 | 1+8.40T+83T2 |
| 89 | 1+(2.87−4.97i)T+(−44.5−77.0i)T2 |
| 97 | 1+3.65T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.79846967185766954230255160259, −9.484778834714513355720155549284, −8.783988168961956592613725771907, −8.180115812866724977833067417966, −7.33277799332082149020284272925, −5.97717821933176128086367905696, −5.64625144953556547059251116268, −4.13188685754835853126872866666, −2.97729711060326083206686738474, −1.67594575944611683732055197894,
0.971547334627725741580565518022, 2.28225935909294695506267709265, 3.46003492026133032423989807151, 4.81920563112858470432290573431, 5.87468511616766347349932527378, 6.75953848884527165825971240332, 7.46541547881080104872506290985, 8.668928592332088228162735211389, 9.746920777047776826610838528506, 10.35337698482755819994941740305