L(s) = 1 | + (−0.276 − 0.478i)2-s + (0.847 − 1.46i)4-s + (0.795 + 1.37i)5-s + (0.886 − 2.49i)7-s − 2.04·8-s + (0.439 − 0.760i)10-s + (−0.5 + 0.866i)11-s + 2.87·13-s + (−1.43 + 0.264i)14-s + (−1.13 − 1.95i)16-s + (2.41 − 4.18i)17-s + (0.572 + 0.992i)19-s + 2.69·20-s + 0.552·22-s + (−1.82 − 3.16i)23-s + ⋯ |
L(s) = 1 | + (−0.195 − 0.338i)2-s + (0.423 − 0.733i)4-s + (0.355 + 0.615i)5-s + (0.335 − 0.942i)7-s − 0.721·8-s + (0.138 − 0.240i)10-s + (−0.150 + 0.261i)11-s + 0.798·13-s + (−0.384 + 0.0706i)14-s + (−0.282 − 0.489i)16-s + (0.586 − 1.01i)17-s + (0.131 + 0.227i)19-s + 0.602·20-s + 0.117·22-s + (−0.380 − 0.659i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.118 + 0.992i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.118 + 0.992i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.20362 - 1.06888i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.20362 - 1.06888i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-0.886 + 2.49i)T \) |
| 11 | \( 1 + (0.5 - 0.866i)T \) |
good | 2 | \( 1 + (0.276 + 0.478i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (-0.795 - 1.37i)T + (-2.5 + 4.33i)T^{2} \) |
| 13 | \( 1 - 2.87T + 13T^{2} \) |
| 17 | \( 1 + (-2.41 + 4.18i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.572 - 0.992i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.82 + 3.16i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 0.325T + 29T^{2} \) |
| 31 | \( 1 + (3.22 - 5.58i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (0.847 + 1.46i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 4.05T + 41T^{2} \) |
| 43 | \( 1 - 4.62T + 43T^{2} \) |
| 47 | \( 1 + (-0.152 - 0.264i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.85 + 4.94i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-5.93 + 10.2i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.886 + 1.53i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (7.63 - 13.2i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 9.16T + 71T^{2} \) |
| 73 | \( 1 + (-5.86 + 10.1i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-4.35 - 7.54i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 8.40T + 83T^{2} \) |
| 89 | \( 1 + (2.87 + 4.97i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 3.65T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.35337698482755819994941740305, −9.746920777047776826610838528506, −8.668928592332088228162735211389, −7.46541547881080104872506290985, −6.75953848884527165825971240332, −5.87468511616766347349932527378, −4.81920563112858470432290573431, −3.46003492026133032423989807151, −2.28225935909294695506267709265, −0.971547334627725741580565518022,
1.67594575944611683732055197894, 2.97729711060326083206686738474, 4.13188685754835853126872866666, 5.64625144953556547059251116268, 5.97717821933176128086367905696, 7.33277799332082149020284272925, 8.180115812866724977833067417966, 8.783988168961956592613725771907, 9.484778834714513355720155549284, 10.79846967185766954230255160259