| L(s) = 1 | + (−1.26 + 0.634i)2-s − 1.91·3-s + (1.19 − 1.60i)4-s + 5-s + (2.42 − 1.21i)6-s + 3.32i·7-s + (−0.495 + 2.78i)8-s + 0.669·9-s + (−1.26 + 0.634i)10-s + 5.61·11-s + (−2.29 + 3.07i)12-s − 3.09i·13-s + (−2.11 − 4.20i)14-s − 1.91·15-s + (−1.14 − 3.83i)16-s + (−3.99 + 1.03i)17-s + ⋯ |
| L(s) = 1 | + (−0.893 + 0.448i)2-s − 1.10·3-s + (0.597 − 0.801i)4-s + 0.447·5-s + (0.988 − 0.495i)6-s + 1.25i·7-s + (−0.175 + 0.984i)8-s + 0.223·9-s + (−0.399 + 0.200i)10-s + 1.69·11-s + (−0.661 + 0.886i)12-s − 0.859i·13-s + (−0.564 − 1.12i)14-s − 0.494·15-s + (−0.285 − 0.958i)16-s + (−0.967 + 0.252i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0787 - 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0787 - 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.452489 + 0.489651i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.452489 + 0.489651i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (1.26 - 0.634i)T \) |
| 5 | \( 1 - T \) |
| 17 | \( 1 + (3.99 - 1.03i)T \) |
| good | 3 | \( 1 + 1.91T + 3T^{2} \) |
| 7 | \( 1 - 3.32iT - 7T^{2} \) |
| 11 | \( 1 - 5.61T + 11T^{2} \) |
| 13 | \( 1 + 3.09iT - 13T^{2} \) |
| 19 | \( 1 - 0.142iT - 19T^{2} \) |
| 23 | \( 1 + 1.97iT - 23T^{2} \) |
| 29 | \( 1 - 1.39T + 29T^{2} \) |
| 31 | \( 1 - 5.08iT - 31T^{2} \) |
| 37 | \( 1 - 1.12T + 37T^{2} \) |
| 41 | \( 1 - 4.91iT - 41T^{2} \) |
| 43 | \( 1 - 10.2iT - 43T^{2} \) |
| 47 | \( 1 - 5.17T + 47T^{2} \) |
| 53 | \( 1 - 0.833iT - 53T^{2} \) |
| 59 | \( 1 + 1.78iT - 59T^{2} \) |
| 61 | \( 1 + 10.0T + 61T^{2} \) |
| 67 | \( 1 - 13.2iT - 67T^{2} \) |
| 71 | \( 1 - 13.0iT - 71T^{2} \) |
| 73 | \( 1 - 8.46iT - 73T^{2} \) |
| 79 | \( 1 - 13.5iT - 79T^{2} \) |
| 83 | \( 1 + 17.4iT - 83T^{2} \) |
| 89 | \( 1 - 12.8T + 89T^{2} \) |
| 97 | \( 1 - 4.67iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.71114628284561749276757839502, −9.764632756310330784891288554434, −8.929517453096976596259331197427, −8.408841918749865313567867083751, −6.91321251474079697748382276403, −6.20393245035209434584302507115, −5.75189335372985736608634479244, −4.70885634804337172193444082733, −2.67864962308141947107547995694, −1.23687063837242052084817905884,
0.63099220559603828253003853721, 1.86706676705967231879003233620, 3.70970671700577828286173396012, 4.55469275843706285000746362867, 6.18847257561381673507596903899, 6.70476524520373892866163098445, 7.47046501102064299159642505567, 8.937922791786652934663777694996, 9.378937972182728053551982691713, 10.49577497180971865804620370323