Properties

Label 2-680-1.1-c1-0-6
Degree $2$
Conductor $680$
Sign $1$
Analytic cond. $5.42982$
Root an. cond. $2.33019$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.68·3-s − 5-s − 0.508·7-s + 4.18·9-s + 5.87·11-s − 1.18·13-s − 2.68·15-s + 17-s + 0.810·19-s − 1.36·21-s − 0.508·23-s + 25-s + 3.18·27-s − 0.173·29-s + 9.06·31-s + 15.7·33-s + 0.508·35-s − 4.37·37-s − 3.18·39-s + 2·41-s − 1.36·43-s − 4.18·45-s − 10.1·47-s − 6.74·49-s + 2.68·51-s + 8.17·53-s − 5.87·55-s + ⋯
L(s)  = 1  + 1.54·3-s − 0.447·5-s − 0.192·7-s + 1.39·9-s + 1.77·11-s − 0.329·13-s − 0.692·15-s + 0.242·17-s + 0.185·19-s − 0.297·21-s − 0.105·23-s + 0.200·25-s + 0.613·27-s − 0.0321·29-s + 1.62·31-s + 2.74·33-s + 0.0859·35-s − 0.719·37-s − 0.510·39-s + 0.312·41-s − 0.207·43-s − 0.624·45-s − 1.48·47-s − 0.963·49-s + 0.375·51-s + 1.12·53-s − 0.791·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(680\)    =    \(2^{3} \cdot 5 \cdot 17\)
Sign: $1$
Analytic conductor: \(5.42982\)
Root analytic conductor: \(2.33019\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 680,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.459816176\)
\(L(\frac12)\) \(\approx\) \(2.459816176\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
17 \( 1 - T \)
good3 \( 1 - 2.68T + 3T^{2} \)
7 \( 1 + 0.508T + 7T^{2} \)
11 \( 1 - 5.87T + 11T^{2} \)
13 \( 1 + 1.18T + 13T^{2} \)
19 \( 1 - 0.810T + 19T^{2} \)
23 \( 1 + 0.508T + 23T^{2} \)
29 \( 1 + 0.173T + 29T^{2} \)
31 \( 1 - 9.06T + 31T^{2} \)
37 \( 1 + 4.37T + 37T^{2} \)
41 \( 1 - 2T + 41T^{2} \)
43 \( 1 + 1.36T + 43T^{2} \)
47 \( 1 + 10.1T + 47T^{2} \)
53 \( 1 - 8.17T + 53T^{2} \)
59 \( 1 + 9.91T + 59T^{2} \)
61 \( 1 + 6.55T + 61T^{2} \)
67 \( 1 - 2.37T + 67T^{2} \)
71 \( 1 + 11.6T + 71T^{2} \)
73 \( 1 - 10.5T + 73T^{2} \)
79 \( 1 + 4.85T + 79T^{2} \)
83 \( 1 + 15.7T + 83T^{2} \)
89 \( 1 + 1.53T + 89T^{2} \)
97 \( 1 - 8.93T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.14375616248289959822511876344, −9.452477313972348140648822010053, −8.761193346271543882242733591958, −8.046875178135292385952588798351, −7.14713347091120147453818219014, −6.29318996037078101766858250352, −4.61160947991573309296632912841, −3.72485734907373512265634401874, −2.92922126761614873901167175469, −1.52125823993003701007384407282, 1.52125823993003701007384407282, 2.92922126761614873901167175469, 3.72485734907373512265634401874, 4.61160947991573309296632912841, 6.29318996037078101766858250352, 7.14713347091120147453818219014, 8.046875178135292385952588798351, 8.761193346271543882242733591958, 9.452477313972348140648822010053, 10.14375616248289959822511876344

Graph of the $Z$-function along the critical line