L(s) = 1 | + (0.866 − 0.5i)2-s + (−0.500 + 0.866i)4-s + (2.59 − 1.5i)7-s + 3i·8-s + (−1 − 1.73i)11-s + (1.73 + i)13-s + (1.5 − 2.59i)14-s + (0.500 + 0.866i)16-s + 4i·17-s + 8·19-s + (−1.73 − 0.999i)22-s + (2.59 + 1.5i)23-s + 1.99·26-s + 3i·28-s + (0.5 + 0.866i)29-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (−0.250 + 0.433i)4-s + (0.981 − 0.566i)7-s + 1.06i·8-s + (−0.301 − 0.522i)11-s + (0.480 + 0.277i)13-s + (0.400 − 0.694i)14-s + (0.125 + 0.216i)16-s + 0.970i·17-s + 1.83·19-s + (−0.369 − 0.213i)22-s + (0.541 + 0.312i)23-s + 0.392·26-s + 0.566i·28-s + (0.0928 + 0.160i)29-s + ⋯ |
Λ(s)=(=(675s/2ΓC(s)L(s)(0.993−0.114i)Λ(2−s)
Λ(s)=(=(675s/2ΓC(s+1/2)L(s)(0.993−0.114i)Λ(1−s)
Degree: |
2 |
Conductor: |
675
= 33⋅52
|
Sign: |
0.993−0.114i
|
Analytic conductor: |
5.38990 |
Root analytic conductor: |
2.32161 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ675(199,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 675, ( :1/2), 0.993−0.114i)
|
Particular Values
L(1) |
≈ |
2.14741+0.123162i |
L(21) |
≈ |
2.14741+0.123162i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
good | 2 | 1+(−0.866+0.5i)T+(1−1.73i)T2 |
| 7 | 1+(−2.59+1.5i)T+(3.5−6.06i)T2 |
| 11 | 1+(1+1.73i)T+(−5.5+9.52i)T2 |
| 13 | 1+(−1.73−i)T+(6.5+11.2i)T2 |
| 17 | 1−4iT−17T2 |
| 19 | 1−8T+19T2 |
| 23 | 1+(−2.59−1.5i)T+(11.5+19.9i)T2 |
| 29 | 1+(−0.5−0.866i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−15.5−26.8i)T2 |
| 37 | 1−4iT−37T2 |
| 41 | 1+(−2.5+4.33i)T+(−20.5−35.5i)T2 |
| 43 | 1+(6.92−4i)T+(21.5−37.2i)T2 |
| 47 | 1+(−6.06+3.5i)T+(23.5−40.7i)T2 |
| 53 | 1−2iT−53T2 |
| 59 | 1+(−7+12.1i)T+(−29.5−51.0i)T2 |
| 61 | 1+(3.5+6.06i)T+(−30.5+52.8i)T2 |
| 67 | 1+(2.59+1.5i)T+(33.5+58.0i)T2 |
| 71 | 1+2T+71T2 |
| 73 | 1−4iT−73T2 |
| 79 | 1+(3+5.19i)T+(−39.5+68.4i)T2 |
| 83 | 1+(7.79−4.5i)T+(41.5−71.8i)T2 |
| 89 | 1+15T+89T2 |
| 97 | 1+(1.73−i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.90642698527740960415877920159, −9.713116724960405718340243398995, −8.572068195593347711592871001881, −8.019724471807744644162704460656, −7.12338386369203983760094452322, −5.68368825407470785520033138161, −4.91424739737909736192938338204, −3.91994113874144726662661087229, −3.05509898669358670064665512742, −1.47004028892139664765682362741,
1.20513933024391575085177907668, 2.84034043073368269531378945440, 4.25138102848267378950118637080, 5.21228152956657950829616000738, 5.59384290486228412745919484861, 6.92292644948889585028588805074, 7.69455030349641775089774965689, 8.823099313681104013352343971600, 9.586403667212809748677897649958, 10.45420552087374898278983221479