Properties

Label 675.2.k.a.199.2
Level $675$
Weight $2$
Character 675.199
Analytic conductor $5.390$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(199,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.199");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.k (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 199.2
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 675.199
Dual form 675.2.k.a.424.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(2.59808 - 1.50000i) q^{7} +3.00000i q^{8} +O(q^{10})\) \(q+(0.866025 - 0.500000i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(2.59808 - 1.50000i) q^{7} +3.00000i q^{8} +(-1.00000 - 1.73205i) q^{11} +(1.73205 + 1.00000i) q^{13} +(1.50000 - 2.59808i) q^{14} +(0.500000 + 0.866025i) q^{16} +4.00000i q^{17} +8.00000 q^{19} +(-1.73205 - 1.00000i) q^{22} +(2.59808 + 1.50000i) q^{23} +2.00000 q^{26} +3.00000i q^{28} +(0.500000 + 0.866025i) q^{29} +(-4.33013 - 2.50000i) q^{32} +(2.00000 + 3.46410i) q^{34} +4.00000i q^{37} +(6.92820 - 4.00000i) q^{38} +(2.50000 - 4.33013i) q^{41} +(-6.92820 + 4.00000i) q^{43} +2.00000 q^{44} +3.00000 q^{46} +(6.06218 - 3.50000i) q^{47} +(1.00000 - 1.73205i) q^{49} +(-1.73205 + 1.00000i) q^{52} +2.00000i q^{53} +(4.50000 + 7.79423i) q^{56} +(0.866025 + 0.500000i) q^{58} +(7.00000 - 12.1244i) q^{59} +(-3.50000 - 6.06218i) q^{61} -7.00000 q^{64} +(-2.59808 - 1.50000i) q^{67} +(-3.46410 - 2.00000i) q^{68} -2.00000 q^{71} +4.00000i q^{73} +(2.00000 + 3.46410i) q^{74} +(-4.00000 + 6.92820i) q^{76} +(-5.19615 - 3.00000i) q^{77} +(-3.00000 - 5.19615i) q^{79} -5.00000i q^{82} +(-7.79423 + 4.50000i) q^{83} +(-4.00000 + 6.92820i) q^{86} +(5.19615 - 3.00000i) q^{88} -15.0000 q^{89} +6.00000 q^{91} +(-2.59808 + 1.50000i) q^{92} +(3.50000 - 6.06218i) q^{94} +(-1.73205 + 1.00000i) q^{97} -2.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{4} - 4 q^{11} + 6 q^{14} + 2 q^{16} + 32 q^{19} + 8 q^{26} + 2 q^{29} + 8 q^{34} + 10 q^{41} + 8 q^{44} + 12 q^{46} + 4 q^{49} + 18 q^{56} + 28 q^{59} - 14 q^{61} - 28 q^{64} - 8 q^{71} + 8 q^{74} - 16 q^{76} - 12 q^{79} - 16 q^{86} - 60 q^{89} + 24 q^{91} + 14 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i −0.161521 0.986869i \(-0.551640\pi\)
0.773893 + 0.633316i \(0.218307\pi\)
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0 0
\(6\) 0 0
\(7\) 2.59808 1.50000i 0.981981 0.566947i 0.0791130 0.996866i \(-0.474791\pi\)
0.902867 + 0.429919i \(0.141458\pi\)
\(8\) 3.00000i 1.06066i
\(9\) 0 0
\(10\) 0 0
\(11\) −1.00000 1.73205i −0.301511 0.522233i 0.674967 0.737848i \(-0.264158\pi\)
−0.976478 + 0.215615i \(0.930824\pi\)
\(12\) 0 0
\(13\) 1.73205 + 1.00000i 0.480384 + 0.277350i 0.720577 0.693375i \(-0.243877\pi\)
−0.240192 + 0.970725i \(0.577210\pi\)
\(14\) 1.50000 2.59808i 0.400892 0.694365i
\(15\) 0 0
\(16\) 0.500000 + 0.866025i 0.125000 + 0.216506i
\(17\) 4.00000i 0.970143i 0.874475 + 0.485071i \(0.161206\pi\)
−0.874475 + 0.485071i \(0.838794\pi\)
\(18\) 0 0
\(19\) 8.00000 1.83533 0.917663 0.397360i \(-0.130073\pi\)
0.917663 + 0.397360i \(0.130073\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −1.73205 1.00000i −0.369274 0.213201i
\(23\) 2.59808 + 1.50000i 0.541736 + 0.312772i 0.745782 0.666190i \(-0.232076\pi\)
−0.204046 + 0.978961i \(0.565409\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 2.00000 0.392232
\(27\) 0 0
\(28\) 3.00000i 0.566947i
\(29\) 0.500000 + 0.866025i 0.0928477 + 0.160817i 0.908708 0.417432i \(-0.137070\pi\)
−0.815861 + 0.578249i \(0.803736\pi\)
\(30\) 0 0
\(31\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(32\) −4.33013 2.50000i −0.765466 0.441942i
\(33\) 0 0
\(34\) 2.00000 + 3.46410i 0.342997 + 0.594089i
\(35\) 0 0
\(36\) 0 0
\(37\) 4.00000i 0.657596i 0.944400 + 0.328798i \(0.106644\pi\)
−0.944400 + 0.328798i \(0.893356\pi\)
\(38\) 6.92820 4.00000i 1.12390 0.648886i
\(39\) 0 0
\(40\) 0 0
\(41\) 2.50000 4.33013i 0.390434 0.676252i −0.602072 0.798441i \(-0.705658\pi\)
0.992507 + 0.122189i \(0.0389915\pi\)
\(42\) 0 0
\(43\) −6.92820 + 4.00000i −1.05654 + 0.609994i −0.924473 0.381246i \(-0.875495\pi\)
−0.132068 + 0.991241i \(0.542162\pi\)
\(44\) 2.00000 0.301511
\(45\) 0 0
\(46\) 3.00000 0.442326
\(47\) 6.06218 3.50000i 0.884260 0.510527i 0.0121990 0.999926i \(-0.496117\pi\)
0.872060 + 0.489398i \(0.162783\pi\)
\(48\) 0 0
\(49\) 1.00000 1.73205i 0.142857 0.247436i
\(50\) 0 0
\(51\) 0 0
\(52\) −1.73205 + 1.00000i −0.240192 + 0.138675i
\(53\) 2.00000i 0.274721i 0.990521 + 0.137361i \(0.0438619\pi\)
−0.990521 + 0.137361i \(0.956138\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 4.50000 + 7.79423i 0.601338 + 1.04155i
\(57\) 0 0
\(58\) 0.866025 + 0.500000i 0.113715 + 0.0656532i
\(59\) 7.00000 12.1244i 0.911322 1.57846i 0.0991242 0.995075i \(-0.468396\pi\)
0.812198 0.583382i \(-0.198271\pi\)
\(60\) 0 0
\(61\) −3.50000 6.06218i −0.448129 0.776182i 0.550135 0.835076i \(-0.314576\pi\)
−0.998264 + 0.0588933i \(0.981243\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −7.00000 −0.875000
\(65\) 0 0
\(66\) 0 0
\(67\) −2.59808 1.50000i −0.317406 0.183254i 0.332830 0.942987i \(-0.391996\pi\)
−0.650236 + 0.759733i \(0.725330\pi\)
\(68\) −3.46410 2.00000i −0.420084 0.242536i
\(69\) 0 0
\(70\) 0 0
\(71\) −2.00000 −0.237356 −0.118678 0.992933i \(-0.537866\pi\)
−0.118678 + 0.992933i \(0.537866\pi\)
\(72\) 0 0
\(73\) 4.00000i 0.468165i 0.972217 + 0.234082i \(0.0752085\pi\)
−0.972217 + 0.234082i \(0.924791\pi\)
\(74\) 2.00000 + 3.46410i 0.232495 + 0.402694i
\(75\) 0 0
\(76\) −4.00000 + 6.92820i −0.458831 + 0.794719i
\(77\) −5.19615 3.00000i −0.592157 0.341882i
\(78\) 0 0
\(79\) −3.00000 5.19615i −0.337526 0.584613i 0.646440 0.762964i \(-0.276257\pi\)
−0.983967 + 0.178352i \(0.942924\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 5.00000i 0.552158i
\(83\) −7.79423 + 4.50000i −0.855528 + 0.493939i −0.862512 0.506036i \(-0.831110\pi\)
0.00698436 + 0.999976i \(0.497777\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −4.00000 + 6.92820i −0.431331 + 0.747087i
\(87\) 0 0
\(88\) 5.19615 3.00000i 0.553912 0.319801i
\(89\) −15.0000 −1.59000 −0.794998 0.606612i \(-0.792528\pi\)
−0.794998 + 0.606612i \(0.792528\pi\)
\(90\) 0 0
\(91\) 6.00000 0.628971
\(92\) −2.59808 + 1.50000i −0.270868 + 0.156386i
\(93\) 0 0
\(94\) 3.50000 6.06218i 0.360997 0.625266i
\(95\) 0 0
\(96\) 0 0
\(97\) −1.73205 + 1.00000i −0.175863 + 0.101535i −0.585348 0.810782i \(-0.699042\pi\)
0.409484 + 0.912317i \(0.365709\pi\)
\(98\) 2.00000i 0.202031i
\(99\) 0 0
\(100\) 0 0
\(101\) −9.00000 15.5885i −0.895533 1.55111i −0.833143 0.553058i \(-0.813461\pi\)
−0.0623905 0.998052i \(-0.519872\pi\)
\(102\) 0 0
\(103\) −6.92820 4.00000i −0.682656 0.394132i 0.118199 0.992990i \(-0.462288\pi\)
−0.800855 + 0.598858i \(0.795621\pi\)
\(104\) −3.00000 + 5.19615i −0.294174 + 0.509525i
\(105\) 0 0
\(106\) 1.00000 + 1.73205i 0.0971286 + 0.168232i
\(107\) 3.00000i 0.290021i 0.989430 + 0.145010i \(0.0463216\pi\)
−0.989430 + 0.145010i \(0.953678\pi\)
\(108\) 0 0
\(109\) −5.00000 −0.478913 −0.239457 0.970907i \(-0.576969\pi\)
−0.239457 + 0.970907i \(0.576969\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 2.59808 + 1.50000i 0.245495 + 0.141737i
\(113\) −6.92820 4.00000i −0.651751 0.376288i 0.137376 0.990519i \(-0.456133\pi\)
−0.789127 + 0.614231i \(0.789466\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1.00000 −0.0928477
\(117\) 0 0
\(118\) 14.0000i 1.28880i
\(119\) 6.00000 + 10.3923i 0.550019 + 0.952661i
\(120\) 0 0
\(121\) 3.50000 6.06218i 0.318182 0.551107i
\(122\) −6.06218 3.50000i −0.548844 0.316875i
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 5.00000i 0.443678i 0.975083 + 0.221839i \(0.0712060\pi\)
−0.975083 + 0.221839i \(0.928794\pi\)
\(128\) 2.59808 1.50000i 0.229640 0.132583i
\(129\) 0 0
\(130\) 0 0
\(131\) −3.00000 + 5.19615i −0.262111 + 0.453990i −0.966803 0.255524i \(-0.917752\pi\)
0.704692 + 0.709514i \(0.251085\pi\)
\(132\) 0 0
\(133\) 20.7846 12.0000i 1.80225 1.04053i
\(134\) −3.00000 −0.259161
\(135\) 0 0
\(136\) −12.0000 −1.02899
\(137\) 10.3923 6.00000i 0.887875 0.512615i 0.0146279 0.999893i \(-0.495344\pi\)
0.873247 + 0.487278i \(0.162010\pi\)
\(138\) 0 0
\(139\) −8.00000 + 13.8564i −0.678551 + 1.17529i 0.296866 + 0.954919i \(0.404058\pi\)
−0.975417 + 0.220366i \(0.929275\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −1.73205 + 1.00000i −0.145350 + 0.0839181i
\(143\) 4.00000i 0.334497i
\(144\) 0 0
\(145\) 0 0
\(146\) 2.00000 + 3.46410i 0.165521 + 0.286691i
\(147\) 0 0
\(148\) −3.46410 2.00000i −0.284747 0.164399i
\(149\) −8.50000 + 14.7224i −0.696347 + 1.20611i 0.273377 + 0.961907i \(0.411859\pi\)
−0.969724 + 0.244202i \(0.921474\pi\)
\(150\) 0 0
\(151\) 1.00000 + 1.73205i 0.0813788 + 0.140952i 0.903842 0.427865i \(-0.140734\pi\)
−0.822464 + 0.568818i \(0.807401\pi\)
\(152\) 24.0000i 1.94666i
\(153\) 0 0
\(154\) −6.00000 −0.483494
\(155\) 0 0
\(156\) 0 0
\(157\) 12.1244 + 7.00000i 0.967629 + 0.558661i 0.898513 0.438948i \(-0.144649\pi\)
0.0691164 + 0.997609i \(0.477982\pi\)
\(158\) −5.19615 3.00000i −0.413384 0.238667i
\(159\) 0 0
\(160\) 0 0
\(161\) 9.00000 0.709299
\(162\) 0 0
\(163\) 4.00000i 0.313304i −0.987654 0.156652i \(-0.949930\pi\)
0.987654 0.156652i \(-0.0500701\pi\)
\(164\) 2.50000 + 4.33013i 0.195217 + 0.338126i
\(165\) 0 0
\(166\) −4.50000 + 7.79423i −0.349268 + 0.604949i
\(167\) 7.79423 + 4.50000i 0.603136 + 0.348220i 0.770274 0.637713i \(-0.220119\pi\)
−0.167139 + 0.985933i \(0.553453\pi\)
\(168\) 0 0
\(169\) −4.50000 7.79423i −0.346154 0.599556i
\(170\) 0 0
\(171\) 0 0
\(172\) 8.00000i 0.609994i
\(173\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.00000 1.73205i 0.0753778 0.130558i
\(177\) 0 0
\(178\) −12.9904 + 7.50000i −0.973670 + 0.562149i
\(179\) −2.00000 −0.149487 −0.0747435 0.997203i \(-0.523814\pi\)
−0.0747435 + 0.997203i \(0.523814\pi\)
\(180\) 0 0
\(181\) −7.00000 −0.520306 −0.260153 0.965567i \(-0.583773\pi\)
−0.260153 + 0.965567i \(0.583773\pi\)
\(182\) 5.19615 3.00000i 0.385164 0.222375i
\(183\) 0 0
\(184\) −4.50000 + 7.79423i −0.331744 + 0.574598i
\(185\) 0 0
\(186\) 0 0
\(187\) 6.92820 4.00000i 0.506640 0.292509i
\(188\) 7.00000i 0.510527i
\(189\) 0 0
\(190\) 0 0
\(191\) 4.00000 + 6.92820i 0.289430 + 0.501307i 0.973674 0.227946i \(-0.0732010\pi\)
−0.684244 + 0.729253i \(0.739868\pi\)
\(192\) 0 0
\(193\) 8.66025 + 5.00000i 0.623379 + 0.359908i 0.778183 0.628037i \(-0.216141\pi\)
−0.154805 + 0.987945i \(0.549475\pi\)
\(194\) −1.00000 + 1.73205i −0.0717958 + 0.124354i
\(195\) 0 0
\(196\) 1.00000 + 1.73205i 0.0714286 + 0.123718i
\(197\) 12.0000i 0.854965i −0.904024 0.427482i \(-0.859401\pi\)
0.904024 0.427482i \(-0.140599\pi\)
\(198\) 0 0
\(199\) −4.00000 −0.283552 −0.141776 0.989899i \(-0.545281\pi\)
−0.141776 + 0.989899i \(0.545281\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −15.5885 9.00000i −1.09680 0.633238i
\(203\) 2.59808 + 1.50000i 0.182349 + 0.105279i
\(204\) 0 0
\(205\) 0 0
\(206\) −8.00000 −0.557386
\(207\) 0 0
\(208\) 2.00000i 0.138675i
\(209\) −8.00000 13.8564i −0.553372 0.958468i
\(210\) 0 0
\(211\) 11.0000 19.0526i 0.757271 1.31163i −0.186966 0.982366i \(-0.559865\pi\)
0.944237 0.329266i \(-0.106801\pi\)
\(212\) −1.73205 1.00000i −0.118958 0.0686803i
\(213\) 0 0
\(214\) 1.50000 + 2.59808i 0.102538 + 0.177601i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −4.33013 + 2.50000i −0.293273 + 0.169321i
\(219\) 0 0
\(220\) 0 0
\(221\) −4.00000 + 6.92820i −0.269069 + 0.466041i
\(222\) 0 0
\(223\) −16.4545 + 9.50000i −1.10187 + 0.636167i −0.936713 0.350100i \(-0.886148\pi\)
−0.165161 + 0.986267i \(0.552814\pi\)
\(224\) −15.0000 −1.00223
\(225\) 0 0
\(226\) −8.00000 −0.532152
\(227\) −3.46410 + 2.00000i −0.229920 + 0.132745i −0.610535 0.791989i \(-0.709046\pi\)
0.380615 + 0.924734i \(0.375712\pi\)
\(228\) 0 0
\(229\) 7.50000 12.9904i 0.495614 0.858429i −0.504373 0.863486i \(-0.668276\pi\)
0.999987 + 0.00505719i \(0.00160976\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −2.59808 + 1.50000i −0.170572 + 0.0984798i
\(233\) 24.0000i 1.57229i −0.618041 0.786146i \(-0.712073\pi\)
0.618041 0.786146i \(-0.287927\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 7.00000 + 12.1244i 0.455661 + 0.789228i
\(237\) 0 0
\(238\) 10.3923 + 6.00000i 0.673633 + 0.388922i
\(239\) 4.00000 6.92820i 0.258738 0.448148i −0.707166 0.707048i \(-0.750027\pi\)
0.965904 + 0.258900i \(0.0833599\pi\)
\(240\) 0 0
\(241\) 5.50000 + 9.52628i 0.354286 + 0.613642i 0.986996 0.160748i \(-0.0513906\pi\)
−0.632709 + 0.774389i \(0.718057\pi\)
\(242\) 7.00000i 0.449977i
\(243\) 0 0
\(244\) 7.00000 0.448129
\(245\) 0 0
\(246\) 0 0
\(247\) 13.8564 + 8.00000i 0.881662 + 0.509028i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 6.00000i 0.377217i
\(254\) 2.50000 + 4.33013i 0.156864 + 0.271696i
\(255\) 0 0
\(256\) 8.50000 14.7224i 0.531250 0.920152i
\(257\) 5.19615 + 3.00000i 0.324127 + 0.187135i 0.653231 0.757159i \(-0.273413\pi\)
−0.329104 + 0.944294i \(0.606747\pi\)
\(258\) 0 0
\(259\) 6.00000 + 10.3923i 0.372822 + 0.645746i
\(260\) 0 0
\(261\) 0 0
\(262\) 6.00000i 0.370681i
\(263\) 13.8564 8.00000i 0.854423 0.493301i −0.00771799 0.999970i \(-0.502457\pi\)
0.862141 + 0.506669i \(0.169123\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 12.0000 20.7846i 0.735767 1.27439i
\(267\) 0 0
\(268\) 2.59808 1.50000i 0.158703 0.0916271i
\(269\) 25.0000 1.52428 0.762138 0.647414i \(-0.224150\pi\)
0.762138 + 0.647414i \(0.224150\pi\)
\(270\) 0 0
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) −3.46410 + 2.00000i −0.210042 + 0.121268i
\(273\) 0 0
\(274\) 6.00000 10.3923i 0.362473 0.627822i
\(275\) 0 0
\(276\) 0 0
\(277\) −10.3923 + 6.00000i −0.624413 + 0.360505i −0.778585 0.627539i \(-0.784062\pi\)
0.154172 + 0.988044i \(0.450729\pi\)
\(278\) 16.0000i 0.959616i
\(279\) 0 0
\(280\) 0 0
\(281\) −7.50000 12.9904i −0.447412 0.774941i 0.550804 0.834634i \(-0.314321\pi\)
−0.998217 + 0.0596933i \(0.980988\pi\)
\(282\) 0 0
\(283\) −18.1865 10.5000i −1.08108 0.624160i −0.149890 0.988703i \(-0.547892\pi\)
−0.931187 + 0.364542i \(0.881225\pi\)
\(284\) 1.00000 1.73205i 0.0593391 0.102778i
\(285\) 0 0
\(286\) −2.00000 3.46410i −0.118262 0.204837i
\(287\) 15.0000i 0.885422i
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) −3.46410 2.00000i −0.202721 0.117041i
\(293\) 10.3923 + 6.00000i 0.607125 + 0.350524i 0.771839 0.635818i \(-0.219337\pi\)
−0.164714 + 0.986341i \(0.552670\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −12.0000 −0.697486
\(297\) 0 0
\(298\) 17.0000i 0.984784i
\(299\) 3.00000 + 5.19615i 0.173494 + 0.300501i
\(300\) 0 0
\(301\) −12.0000 + 20.7846i −0.691669 + 1.19800i
\(302\) 1.73205 + 1.00000i 0.0996683 + 0.0575435i
\(303\) 0 0
\(304\) 4.00000 + 6.92820i 0.229416 + 0.397360i
\(305\) 0 0
\(306\) 0 0
\(307\) 7.00000i 0.399511i −0.979846 0.199756i \(-0.935985\pi\)
0.979846 0.199756i \(-0.0640148\pi\)
\(308\) 5.19615 3.00000i 0.296078 0.170941i
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(312\) 0 0
\(313\) 12.1244 7.00000i 0.685309 0.395663i −0.116543 0.993186i \(-0.537181\pi\)
0.801852 + 0.597522i \(0.203848\pi\)
\(314\) 14.0000 0.790066
\(315\) 0 0
\(316\) 6.00000 0.337526
\(317\) −29.4449 + 17.0000i −1.65379 + 0.954815i −0.678294 + 0.734791i \(0.737280\pi\)
−0.975494 + 0.220024i \(0.929386\pi\)
\(318\) 0 0
\(319\) 1.00000 1.73205i 0.0559893 0.0969762i
\(320\) 0 0
\(321\) 0 0
\(322\) 7.79423 4.50000i 0.434355 0.250775i
\(323\) 32.0000i 1.78053i
\(324\) 0 0
\(325\) 0 0
\(326\) −2.00000 3.46410i −0.110770 0.191859i
\(327\) 0 0
\(328\) 12.9904 + 7.50000i 0.717274 + 0.414118i
\(329\) 10.5000 18.1865i 0.578884 1.00266i
\(330\) 0 0
\(331\) 3.00000 + 5.19615i 0.164895 + 0.285606i 0.936618 0.350352i \(-0.113938\pi\)
−0.771723 + 0.635959i \(0.780605\pi\)
\(332\) 9.00000i 0.493939i
\(333\) 0 0
\(334\) 9.00000 0.492458
\(335\) 0 0
\(336\) 0 0
\(337\) −6.92820 4.00000i −0.377403 0.217894i 0.299285 0.954164i \(-0.403252\pi\)
−0.676688 + 0.736270i \(0.736585\pi\)
\(338\) −7.79423 4.50000i −0.423950 0.244768i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 15.0000i 0.809924i
\(344\) −12.0000 20.7846i −0.646997 1.12063i
\(345\) 0 0
\(346\) 0 0
\(347\) −3.46410 2.00000i −0.185963 0.107366i 0.404128 0.914702i \(-0.367575\pi\)
−0.590091 + 0.807337i \(0.700908\pi\)
\(348\) 0 0
\(349\) −2.50000 4.33013i −0.133822 0.231786i 0.791325 0.611396i \(-0.209392\pi\)
−0.925147 + 0.379610i \(0.876058\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 10.0000i 0.533002i
\(353\) −20.7846 + 12.0000i −1.10625 + 0.638696i −0.937856 0.347024i \(-0.887192\pi\)
−0.168397 + 0.985719i \(0.553859\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 7.50000 12.9904i 0.397499 0.688489i
\(357\) 0 0
\(358\) −1.73205 + 1.00000i −0.0915417 + 0.0528516i
\(359\) 24.0000 1.26667 0.633336 0.773877i \(-0.281685\pi\)
0.633336 + 0.773877i \(0.281685\pi\)
\(360\) 0 0
\(361\) 45.0000 2.36842
\(362\) −6.06218 + 3.50000i −0.318621 + 0.183956i
\(363\) 0 0
\(364\) −3.00000 + 5.19615i −0.157243 + 0.272352i
\(365\) 0 0
\(366\) 0 0
\(367\) −20.7846 + 12.0000i −1.08495 + 0.626395i −0.932227 0.361874i \(-0.882137\pi\)
−0.152721 + 0.988269i \(0.548804\pi\)
\(368\) 3.00000i 0.156386i
\(369\) 0 0
\(370\) 0 0
\(371\) 3.00000 + 5.19615i 0.155752 + 0.269771i
\(372\) 0 0
\(373\) −8.66025 5.00000i −0.448411 0.258890i 0.258748 0.965945i \(-0.416690\pi\)
−0.707159 + 0.707055i \(0.750023\pi\)
\(374\) 4.00000 6.92820i 0.206835 0.358249i
\(375\) 0 0
\(376\) 10.5000 + 18.1865i 0.541496 + 0.937899i
\(377\) 2.00000i 0.103005i
\(378\) 0 0
\(379\) 26.0000 1.33553 0.667765 0.744372i \(-0.267251\pi\)
0.667765 + 0.744372i \(0.267251\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 6.92820 + 4.00000i 0.354478 + 0.204658i
\(383\) 31.1769 + 18.0000i 1.59307 + 0.919757i 0.992777 + 0.119974i \(0.0382810\pi\)
0.600289 + 0.799783i \(0.295052\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 10.0000 0.508987
\(387\) 0 0
\(388\) 2.00000i 0.101535i
\(389\) −16.5000 28.5788i −0.836583 1.44900i −0.892735 0.450582i \(-0.851216\pi\)
0.0561516 0.998422i \(-0.482117\pi\)
\(390\) 0 0
\(391\) −6.00000 + 10.3923i −0.303433 + 0.525561i
\(392\) 5.19615 + 3.00000i 0.262445 + 0.151523i
\(393\) 0 0
\(394\) −6.00000 10.3923i −0.302276 0.523557i
\(395\) 0 0
\(396\) 0 0
\(397\) 34.0000i 1.70641i −0.521575 0.853206i \(-0.674655\pi\)
0.521575 0.853206i \(-0.325345\pi\)
\(398\) −3.46410 + 2.00000i −0.173640 + 0.100251i
\(399\) 0 0
\(400\) 0 0
\(401\) −9.00000 + 15.5885i −0.449439 + 0.778450i −0.998350 0.0574304i \(-0.981709\pi\)
0.548911 + 0.835881i \(0.315043\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 18.0000 0.895533
\(405\) 0 0
\(406\) 3.00000 0.148888
\(407\) 6.92820 4.00000i 0.343418 0.198273i
\(408\) 0 0
\(409\) 7.00000 12.1244i 0.346128 0.599511i −0.639430 0.768849i \(-0.720830\pi\)
0.985558 + 0.169338i \(0.0541630\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 6.92820 4.00000i 0.341328 0.197066i
\(413\) 42.0000i 2.06668i
\(414\) 0 0
\(415\) 0 0
\(416\) −5.00000 8.66025i −0.245145 0.424604i
\(417\) 0 0
\(418\) −13.8564 8.00000i −0.677739 0.391293i
\(419\) −13.0000 + 22.5167i −0.635092 + 1.10001i 0.351404 + 0.936224i \(0.385704\pi\)
−0.986496 + 0.163787i \(0.947629\pi\)
\(420\) 0 0
\(421\) −17.0000 29.4449i −0.828529 1.43505i −0.899192 0.437555i \(-0.855845\pi\)
0.0706626 0.997500i \(-0.477489\pi\)
\(422\) 22.0000i 1.07094i
\(423\) 0 0
\(424\) −6.00000 −0.291386
\(425\) 0 0
\(426\) 0 0
\(427\) −18.1865 10.5000i −0.880108 0.508131i
\(428\) −2.59808 1.50000i −0.125583 0.0725052i
\(429\) 0 0
\(430\) 0 0
\(431\) 30.0000 1.44505 0.722525 0.691345i \(-0.242982\pi\)
0.722525 + 0.691345i \(0.242982\pi\)
\(432\) 0 0
\(433\) 28.0000i 1.34559i 0.739827 + 0.672797i \(0.234907\pi\)
−0.739827 + 0.672797i \(0.765093\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 2.50000 4.33013i 0.119728 0.207375i
\(437\) 20.7846 + 12.0000i 0.994263 + 0.574038i
\(438\) 0 0
\(439\) 14.0000 + 24.2487i 0.668184 + 1.15733i 0.978412 + 0.206666i \(0.0662612\pi\)
−0.310228 + 0.950662i \(0.600405\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 8.00000i 0.380521i
\(443\) −12.9904 + 7.50000i −0.617192 + 0.356336i −0.775775 0.631010i \(-0.782641\pi\)
0.158583 + 0.987346i \(0.449307\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −9.50000 + 16.4545i −0.449838 + 0.779142i
\(447\) 0 0
\(448\) −18.1865 + 10.5000i −0.859233 + 0.496078i
\(449\) −26.0000 −1.22702 −0.613508 0.789689i \(-0.710242\pi\)
−0.613508 + 0.789689i \(0.710242\pi\)
\(450\) 0 0
\(451\) −10.0000 −0.470882
\(452\) 6.92820 4.00000i 0.325875 0.188144i
\(453\) 0 0
\(454\) −2.00000 + 3.46410i −0.0938647 + 0.162578i
\(455\) 0 0
\(456\) 0 0
\(457\) 17.3205 10.0000i 0.810219 0.467780i −0.0368128 0.999322i \(-0.511721\pi\)
0.847032 + 0.531542i \(0.178387\pi\)
\(458\) 15.0000i 0.700904i
\(459\) 0 0
\(460\) 0 0
\(461\) 4.50000 + 7.79423i 0.209586 + 0.363013i 0.951584 0.307388i \(-0.0994551\pi\)
−0.741998 + 0.670402i \(0.766122\pi\)
\(462\) 0 0
\(463\) 31.1769 + 18.0000i 1.44891 + 0.836531i 0.998417 0.0562469i \(-0.0179134\pi\)
0.450497 + 0.892778i \(0.351247\pi\)
\(464\) −0.500000 + 0.866025i −0.0232119 + 0.0402042i
\(465\) 0 0
\(466\) −12.0000 20.7846i −0.555889 0.962828i
\(467\) 20.0000i 0.925490i 0.886492 + 0.462745i \(0.153135\pi\)
−0.886492 + 0.462745i \(0.846865\pi\)
\(468\) 0 0
\(469\) −9.00000 −0.415581
\(470\) 0 0
\(471\) 0 0
\(472\) 36.3731 + 21.0000i 1.67421 + 0.966603i
\(473\) 13.8564 + 8.00000i 0.637118 + 0.367840i
\(474\) 0 0
\(475\) 0 0
\(476\) −12.0000 −0.550019
\(477\) 0 0
\(478\) 8.00000i 0.365911i
\(479\) 9.00000 + 15.5885i 0.411220 + 0.712255i 0.995023 0.0996406i \(-0.0317693\pi\)
−0.583803 + 0.811895i \(0.698436\pi\)
\(480\) 0 0
\(481\) −4.00000 + 6.92820i −0.182384 + 0.315899i
\(482\) 9.52628 + 5.50000i 0.433910 + 0.250518i
\(483\) 0 0
\(484\) 3.50000 + 6.06218i 0.159091 + 0.275554i
\(485\) 0 0
\(486\) 0 0
\(487\) 16.0000i 0.725029i 0.931978 + 0.362515i \(0.118082\pi\)
−0.931978 + 0.362515i \(0.881918\pi\)
\(488\) 18.1865 10.5000i 0.823266 0.475313i
\(489\) 0 0
\(490\) 0 0
\(491\) 10.0000 17.3205i 0.451294 0.781664i −0.547173 0.837020i \(-0.684296\pi\)
0.998467 + 0.0553560i \(0.0176294\pi\)
\(492\) 0 0
\(493\) −3.46410 + 2.00000i −0.156015 + 0.0900755i
\(494\) 16.0000 0.719874
\(495\) 0 0
\(496\) 0 0
\(497\) −5.19615 + 3.00000i −0.233079 + 0.134568i
\(498\) 0 0
\(499\) −16.0000 + 27.7128i −0.716258 + 1.24060i 0.246214 + 0.969216i \(0.420813\pi\)
−0.962472 + 0.271380i \(0.912520\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 7.00000i 0.312115i 0.987748 + 0.156057i \(0.0498784\pi\)
−0.987748 + 0.156057i \(0.950122\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −3.00000 5.19615i −0.133366 0.230997i
\(507\) 0 0
\(508\) −4.33013 2.50000i −0.192118 0.110920i
\(509\) −21.5000 + 37.2391i −0.952971 + 1.65059i −0.214026 + 0.976828i \(0.568658\pi\)
−0.738945 + 0.673766i \(0.764676\pi\)
\(510\) 0 0
\(511\) 6.00000 + 10.3923i 0.265424 + 0.459728i
\(512\) 11.0000i 0.486136i
\(513\) 0 0
\(514\) 6.00000 0.264649
\(515\) 0 0
\(516\) 0 0
\(517\) −12.1244 7.00000i −0.533229 0.307860i
\(518\) 10.3923 + 6.00000i 0.456612 + 0.263625i
\(519\) 0 0
\(520\) 0 0
\(521\) −11.0000 −0.481919 −0.240959 0.970535i \(-0.577462\pi\)
−0.240959 + 0.970535i \(0.577462\pi\)
\(522\) 0 0
\(523\) 29.0000i 1.26808i −0.773300 0.634041i \(-0.781395\pi\)
0.773300 0.634041i \(-0.218605\pi\)
\(524\) −3.00000 5.19615i −0.131056 0.226995i
\(525\) 0 0
\(526\) 8.00000 13.8564i 0.348817 0.604168i
\(527\) 0 0
\(528\) 0 0
\(529\) −7.00000 12.1244i −0.304348 0.527146i
\(530\) 0 0
\(531\) 0 0
\(532\) 24.0000i 1.04053i
\(533\) 8.66025 5.00000i 0.375117 0.216574i
\(534\) 0 0
\(535\) 0 0
\(536\) 4.50000 7.79423i 0.194370 0.336659i
\(537\) 0 0
\(538\) 21.6506 12.5000i 0.933425 0.538913i
\(539\) −4.00000 −0.172292
\(540\) 0 0
\(541\) −39.0000 −1.67674 −0.838370 0.545101i \(-0.816491\pi\)
−0.838370 + 0.545101i \(0.816491\pi\)
\(542\) −6.92820 + 4.00000i −0.297592 + 0.171815i
\(543\) 0 0
\(544\) 10.0000 17.3205i 0.428746 0.742611i
\(545\) 0 0
\(546\) 0 0
\(547\) 25.1147 14.5000i 1.07383 0.619975i 0.144604 0.989490i \(-0.453809\pi\)
0.929225 + 0.369514i \(0.120476\pi\)
\(548\) 12.0000i 0.512615i
\(549\) 0 0
\(550\) 0 0
\(551\) 4.00000 + 6.92820i 0.170406 + 0.295151i
\(552\) 0 0
\(553\) −15.5885 9.00000i −0.662889 0.382719i
\(554\) −6.00000 + 10.3923i −0.254916 + 0.441527i
\(555\) 0 0
\(556\) −8.00000 13.8564i −0.339276 0.587643i
\(557\) 30.0000i 1.27114i −0.772043 0.635570i \(-0.780765\pi\)
0.772043 0.635570i \(-0.219235\pi\)
\(558\) 0 0
\(559\) −16.0000 −0.676728
\(560\) 0 0
\(561\) 0 0
\(562\) −12.9904 7.50000i −0.547966 0.316368i
\(563\) −18.1865 10.5000i −0.766471 0.442522i 0.0651433 0.997876i \(-0.479250\pi\)
−0.831614 + 0.555354i \(0.812583\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −21.0000 −0.882696
\(567\) 0 0
\(568\) 6.00000i 0.251754i
\(569\) 3.00000 + 5.19615i 0.125767 + 0.217834i 0.922032 0.387113i \(-0.126528\pi\)
−0.796266 + 0.604947i \(0.793194\pi\)
\(570\) 0 0
\(571\) −16.0000 + 27.7128i −0.669579 + 1.15975i 0.308443 + 0.951243i \(0.400192\pi\)
−0.978022 + 0.208502i \(0.933141\pi\)
\(572\) 3.46410 + 2.00000i 0.144841 + 0.0836242i
\(573\) 0 0
\(574\) −7.50000 12.9904i −0.313044 0.542208i
\(575\) 0 0
\(576\) 0 0
\(577\) 10.0000i 0.416305i 0.978096 + 0.208153i \(0.0667451\pi\)
−0.978096 + 0.208153i \(0.933255\pi\)
\(578\) 0.866025 0.500000i 0.0360219 0.0207973i
\(579\) 0 0
\(580\) 0 0
\(581\) −13.5000 + 23.3827i −0.560074 + 0.970077i
\(582\) 0 0
\(583\) 3.46410 2.00000i 0.143468 0.0828315i
\(584\) −12.0000 −0.496564
\(585\) 0 0
\(586\) 12.0000 0.495715
\(587\) −28.5788 + 16.5000i −1.17957 + 0.681028i −0.955916 0.293640i \(-0.905133\pi\)
−0.223659 + 0.974668i \(0.571800\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −3.46410 + 2.00000i −0.142374 + 0.0821995i
\(593\) 20.0000i 0.821302i −0.911793 0.410651i \(-0.865302\pi\)
0.911793 0.410651i \(-0.134698\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −8.50000 14.7224i −0.348174 0.603054i
\(597\) 0 0
\(598\) 5.19615 + 3.00000i 0.212486 + 0.122679i
\(599\) 5.00000 8.66025i 0.204294 0.353848i −0.745613 0.666379i \(-0.767843\pi\)
0.949908 + 0.312531i \(0.101177\pi\)
\(600\) 0 0
\(601\) −1.00000 1.73205i −0.0407909 0.0706518i 0.844909 0.534910i \(-0.179654\pi\)
−0.885700 + 0.464258i \(0.846321\pi\)
\(602\) 24.0000i 0.978167i
\(603\) 0 0
\(604\) −2.00000 −0.0813788
\(605\) 0 0
\(606\) 0 0
\(607\) −35.5070 20.5000i −1.44119 0.832069i −0.443257 0.896394i \(-0.646177\pi\)
−0.997929 + 0.0643251i \(0.979511\pi\)
\(608\) −34.6410 20.0000i −1.40488 0.811107i
\(609\) 0 0
\(610\) 0 0
\(611\) 14.0000 0.566379
\(612\) 0 0
\(613\) 44.0000i 1.77714i −0.458738 0.888572i \(-0.651698\pi\)
0.458738 0.888572i \(-0.348302\pi\)
\(614\) −3.50000 6.06218i −0.141249 0.244650i
\(615\) 0 0
\(616\) 9.00000 15.5885i 0.362620 0.628077i
\(617\) 31.1769 + 18.0000i 1.25514 + 0.724653i 0.972125 0.234464i \(-0.0753335\pi\)
0.283011 + 0.959117i \(0.408667\pi\)
\(618\) 0 0
\(619\) −2.00000 3.46410i −0.0803868 0.139234i 0.823029 0.567999i \(-0.192282\pi\)
−0.903416 + 0.428765i \(0.858949\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −38.9711 + 22.5000i −1.56135 + 0.901443i
\(624\) 0 0
\(625\) 0 0
\(626\) 7.00000 12.1244i 0.279776 0.484587i
\(627\) 0 0
\(628\) −12.1244 + 7.00000i −0.483814 + 0.279330i
\(629\) −16.0000 −0.637962
\(630\) 0 0
\(631\) 16.0000 0.636950 0.318475 0.947931i \(-0.396829\pi\)
0.318475 + 0.947931i \(0.396829\pi\)
\(632\) 15.5885 9.00000i 0.620076 0.358001i
\(633\) 0 0
\(634\) −17.0000 + 29.4449i −0.675156 + 1.16940i
\(635\) 0 0
\(636\) 0 0
\(637\) 3.46410 2.00000i 0.137253 0.0792429i
\(638\) 2.00000i 0.0791808i
\(639\) 0 0
\(640\) 0 0
\(641\) 16.5000 + 28.5788i 0.651711 + 1.12880i 0.982708 + 0.185164i \(0.0592817\pi\)
−0.330997 + 0.943632i \(0.607385\pi\)
\(642\) 0 0
\(643\) 7.79423 + 4.50000i 0.307374 + 0.177463i 0.645751 0.763548i \(-0.276544\pi\)
−0.338377 + 0.941011i \(0.609878\pi\)
\(644\) −4.50000 + 7.79423i −0.177325 + 0.307136i
\(645\) 0 0
\(646\) 16.0000 + 27.7128i 0.629512 + 1.09035i
\(647\) 17.0000i 0.668339i −0.942513 0.334169i \(-0.891544\pi\)
0.942513 0.334169i \(-0.108456\pi\)
\(648\) 0 0
\(649\) −28.0000 −1.09910
\(650\) 0 0
\(651\) 0 0
\(652\) 3.46410 + 2.00000i 0.135665 + 0.0783260i
\(653\) −3.46410 2.00000i −0.135561 0.0782660i 0.430686 0.902502i \(-0.358272\pi\)
−0.566247 + 0.824236i \(0.691605\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 5.00000 0.195217
\(657\) 0 0
\(658\) 21.0000i 0.818665i
\(659\) 4.00000 + 6.92820i 0.155818 + 0.269884i 0.933357 0.358951i \(-0.116865\pi\)
−0.777539 + 0.628835i \(0.783532\pi\)
\(660\) 0 0
\(661\) 7.00000 12.1244i 0.272268 0.471583i −0.697174 0.716902i \(-0.745559\pi\)
0.969442 + 0.245319i \(0.0788928\pi\)
\(662\) 5.19615 + 3.00000i 0.201954 + 0.116598i
\(663\) 0 0
\(664\) −13.5000 23.3827i −0.523902 0.907424i
\(665\) 0 0
\(666\) 0 0
\(667\) 3.00000i 0.116160i
\(668\) −7.79423 + 4.50000i −0.301568 + 0.174110i
\(669\) 0 0
\(670\) 0 0
\(671\) −7.00000 + 12.1244i −0.270232 + 0.468056i
\(672\) 0 0
\(673\) 5.19615 3.00000i 0.200297 0.115642i −0.396497 0.918036i \(-0.629774\pi\)
0.596794 + 0.802395i \(0.296441\pi\)
\(674\) −8.00000 −0.308148
\(675\) 0 0
\(676\) 9.00000 0.346154
\(677\) −36.3731 + 21.0000i −1.39793 + 0.807096i −0.994176 0.107772i \(-0.965628\pi\)
−0.403755 + 0.914867i \(0.632295\pi\)
\(678\) 0 0
\(679\) −3.00000 + 5.19615i −0.115129 + 0.199410i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 12.0000i 0.459167i −0.973289 0.229584i \(-0.926264\pi\)
0.973289 0.229584i \(-0.0737364\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 7.50000 + 12.9904i 0.286351 + 0.495975i
\(687\) 0 0
\(688\) −6.92820 4.00000i −0.264135 0.152499i
\(689\) −2.00000 + 3.46410i −0.0761939 + 0.131972i
\(690\) 0 0
\(691\) 7.00000 + 12.1244i 0.266293 + 0.461232i 0.967901 0.251330i \(-0.0808679\pi\)
−0.701609 + 0.712562i \(0.747535\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −4.00000 −0.151838
\(695\) 0 0
\(696\) 0 0
\(697\) 17.3205 + 10.0000i 0.656061 + 0.378777i
\(698\) −4.33013 2.50000i −0.163898 0.0946264i
\(699\) 0 0
\(700\) 0 0
\(701\) −23.0000 −0.868698 −0.434349 0.900745i \(-0.643022\pi\)
−0.434349 + 0.900745i \(0.643022\pi\)
\(702\) 0 0
\(703\) 32.0000i 1.20690i
\(704\) 7.00000 + 12.1244i 0.263822 + 0.456954i
\(705\) 0 0
\(706\) −12.0000 + 20.7846i −0.451626 + 0.782239i
\(707\) −46.7654 27.0000i −1.75879 1.01544i
\(708\) 0 0
\(709\) −20.5000 35.5070i −0.769894 1.33349i −0.937620 0.347661i \(-0.886976\pi\)
0.167727 0.985834i \(-0.446357\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 45.0000i 1.68645i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 1.00000 1.73205i 0.0373718 0.0647298i
\(717\) 0 0
\(718\) 20.7846 12.0000i 0.775675 0.447836i
\(719\) 6.00000 0.223762 0.111881 0.993722i \(-0.464312\pi\)
0.111881 + 0.993722i \(0.464312\pi\)
\(720\) 0 0
\(721\) −24.0000 −0.893807
\(722\) 38.9711 22.5000i 1.45036 0.837363i
\(723\) 0 0
\(724\) 3.50000 6.06218i 0.130076 0.225299i
\(725\) 0 0
\(726\) 0 0
\(727\) −19.9186 + 11.5000i −0.738739 + 0.426511i −0.821611 0.570049i \(-0.806924\pi\)
0.0828714 + 0.996560i \(0.473591\pi\)
\(728\) 18.0000i 0.667124i
\(729\) 0 0
\(730\) 0 0
\(731\) −16.0000 27.7128i −0.591781 1.02500i
\(732\) 0 0
\(733\) 29.4449 + 17.0000i 1.08757 + 0.627909i 0.932929 0.360061i \(-0.117244\pi\)
0.154642 + 0.987971i \(0.450578\pi\)
\(734\) −12.0000 + 20.7846i −0.442928 + 0.767174i
\(735\) 0 0
\(736\) −7.50000 12.9904i −0.276454 0.478832i
\(737\) 6.00000i 0.221013i
\(738\) 0 0
\(739\) 2.00000 0.0735712 0.0367856 0.999323i \(-0.488288\pi\)
0.0367856 + 0.999323i \(0.488288\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 5.19615 + 3.00000i 0.190757 + 0.110133i
\(743\) −25.1147 14.5000i −0.921370 0.531953i −0.0372984 0.999304i \(-0.511875\pi\)
−0.884072 + 0.467351i \(0.845209\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −10.0000 −0.366126
\(747\) 0 0
\(748\) 8.00000i 0.292509i
\(749\) 4.50000 + 7.79423i 0.164426 + 0.284795i
\(750\) 0 0
\(751\) −5.00000 + 8.66025i −0.182453 + 0.316017i −0.942715 0.333599i \(-0.891737\pi\)
0.760263 + 0.649616i \(0.225070\pi\)
\(752\) 6.06218 + 3.50000i 0.221065 + 0.127632i
\(753\) 0 0
\(754\) 1.00000 + 1.73205i 0.0364179 + 0.0630776i
\(755\) 0 0
\(756\) 0 0
\(757\) 26.0000i 0.944986i 0.881334 + 0.472493i \(0.156646\pi\)
−0.881334 + 0.472493i \(0.843354\pi\)
\(758\) 22.5167 13.0000i 0.817842 0.472181i
\(759\) 0 0
\(760\) 0 0
\(761\) 7.50000 12.9904i 0.271875 0.470901i −0.697467 0.716617i \(-0.745690\pi\)
0.969342 + 0.245716i \(0.0790230\pi\)
\(762\) 0 0
\(763\) −12.9904 + 7.50000i −0.470283 + 0.271518i
\(764\) −8.00000 −0.289430
\(765\) 0 0
\(766\) 36.0000 1.30073
\(767\) 24.2487 14.0000i 0.875570 0.505511i
\(768\) 0 0
\(769\) 2.50000 4.33013i 0.0901523 0.156148i −0.817423 0.576038i \(-0.804598\pi\)
0.907575 + 0.419890i \(0.137931\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −8.66025 + 5.00000i −0.311689 + 0.179954i
\(773\) 24.0000i 0.863220i 0.902060 + 0.431610i \(0.142054\pi\)
−0.902060 + 0.431610i \(0.857946\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −3.00000 5.19615i −0.107694 0.186531i
\(777\) 0 0
\(778\) −28.5788 16.5000i −1.02460 0.591554i
\(779\) 20.0000 34.6410i 0.716574 1.24114i
\(780\) 0 0
\(781\) 2.00000 + 3.46410i 0.0715656 + 0.123955i
\(782\) 12.0000i 0.429119i
\(783\) 0 0
\(784\) 2.00000 0.0714286
\(785\) 0 0
\(786\) 0 0
\(787\) 24.2487 + 14.0000i 0.864373 + 0.499046i 0.865474 0.500953i \(-0.167017\pi\)
−0.00110111 + 0.999999i \(0.500350\pi\)
\(788\) 10.3923 + 6.00000i 0.370211 + 0.213741i
\(789\) 0 0
\(790\) 0 0
\(791\) −24.0000 −0.853342
\(792\) 0 0
\(793\) 14.0000i 0.497155i
\(794\) −17.0000 29.4449i −0.603307 1.04496i
\(795\) 0 0
\(796\) 2.00000 3.46410i 0.0708881 0.122782i
\(797\) −22.5167 13.0000i −0.797581 0.460484i 0.0450436 0.998985i \(-0.485657\pi\)
−0.842625 + 0.538501i \(0.818991\pi\)
\(798\) 0 0
\(799\) 14.0000 + 24.2487i 0.495284 + 0.857858i
\(800\) 0 0
\(801\) 0 0
\(802\) 18.0000i 0.635602i
\(803\) 6.92820 4.00000i 0.244491 0.141157i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 46.7654 27.0000i 1.64520 0.949857i
\(809\) 26.0000 0.914111 0.457056 0.889438i \(-0.348904\pi\)
0.457056 + 0.889438i \(0.348904\pi\)
\(810\) 0 0
\(811\) −42.0000 −1.47482 −0.737410 0.675446i \(-0.763951\pi\)
−0.737410 + 0.675446i \(0.763951\pi\)
\(812\) −2.59808 + 1.50000i −0.0911746 + 0.0526397i
\(813\) 0 0
\(814\) 4.00000 6.92820i 0.140200 0.242833i
\(815\) 0 0
\(816\) 0 0
\(817\) −55.4256 + 32.0000i −1.93910 + 1.11954i
\(818\) 14.0000i 0.489499i
\(819\) 0 0
\(820\) 0 0
\(821\) 7.50000 + 12.9904i 0.261752 + 0.453367i 0.966708 0.255884i \(-0.0823665\pi\)
−0.704956 + 0.709251i \(0.749033\pi\)
\(822\) 0 0
\(823\) −45.8993 26.5000i −1.59995 0.923732i −0.991495 0.130144i \(-0.958456\pi\)
−0.608456 0.793588i \(-0.708211\pi\)
\(824\) 12.0000 20.7846i 0.418040 0.724066i
\(825\) 0 0
\(826\) −21.0000 36.3731i −0.730683 1.26558i
\(827\) 37.0000i 1.28662i 0.765607 + 0.643308i \(0.222439\pi\)
−0.765607 + 0.643308i \(0.777561\pi\)
\(828\) 0 0
\(829\) 3.00000 0.104194 0.0520972 0.998642i \(-0.483409\pi\)
0.0520972 + 0.998642i \(0.483409\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −12.1244 7.00000i −0.420336 0.242681i
\(833\) 6.92820 + 4.00000i 0.240048 + 0.138592i
\(834\) 0 0
\(835\) 0 0
\(836\) 16.0000 0.553372
\(837\) 0 0
\(838\) 26.0000i 0.898155i
\(839\) 20.0000 + 34.6410i 0.690477 + 1.19594i 0.971682 + 0.236293i \(0.0759325\pi\)
−0.281205 + 0.959648i \(0.590734\pi\)
\(840\) 0 0
\(841\) 14.0000 24.2487i 0.482759 0.836162i
\(842\) −29.4449 17.0000i −1.01474 0.585859i
\(843\) 0 0
\(844\) 11.0000 + 19.0526i 0.378636 + 0.655816i
\(845\) 0 0
\(846\) 0 0
\(847\) 21.0000i 0.721569i
\(848\) −1.73205 + 1.00000i −0.0594789 + 0.0343401i
\(849\) 0 0
\(850\) 0 0
\(851\) −6.00000 + 10.3923i −0.205677 + 0.356244i
\(852\) 0 0
\(853\) −46.7654 + 27.0000i −1.60122 + 0.924462i −0.609971 + 0.792424i \(0.708819\pi\)
−0.991245 + 0.132039i \(0.957848\pi\)
\(854\) −21.0000 −0.718605
\(855\) 0 0
\(856\) −9.00000 −0.307614
\(857\) 8.66025 5.00000i 0.295829 0.170797i −0.344739 0.938699i \(-0.612033\pi\)
0.640567 + 0.767902i \(0.278699\pi\)
\(858\) 0 0
\(859\) 11.0000 19.0526i 0.375315 0.650065i −0.615059 0.788481i \(-0.710868\pi\)
0.990374 + 0.138416i \(0.0442012\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 25.9808 15.0000i 0.884908 0.510902i
\(863\) 17.0000i 0.578687i −0.957225 0.289343i \(-0.906563\pi\)
0.957225 0.289343i \(-0.0934369\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 14.0000 + 24.2487i 0.475739 + 0.824005i
\(867\) 0 0
\(868\) 0 0
\(869\) −6.00000 + 10.3923i −0.203536 + 0.352535i
\(870\) 0 0
\(871\) −3.00000 5.19615i −0.101651 0.176065i
\(872\) 15.0000i 0.507964i
\(873\) 0 0
\(874\) 24.0000 0.811812
\(875\) 0 0
\(876\) 0 0
\(877\) −15.5885 9.00000i −0.526385 0.303908i 0.213158 0.977018i \(-0.431625\pi\)
−0.739543 + 0.673109i \(0.764958\pi\)
\(878\) 24.2487 + 14.0000i 0.818354 + 0.472477i
\(879\) 0 0
\(880\) 0 0
\(881\) 35.0000 1.17918 0.589590 0.807703i \(-0.299289\pi\)
0.589590 + 0.807703i \(0.299289\pi\)
\(882\) 0 0
\(883\) 23.0000i 0.774012i 0.922077 + 0.387006i \(0.126491\pi\)
−0.922077 + 0.387006i \(0.873509\pi\)
\(884\) −4.00000 6.92820i −0.134535 0.233021i
\(885\) 0 0
\(886\) −7.50000 + 12.9904i −0.251967 + 0.436420i
\(887\) −31.1769 18.0000i −1.04682 0.604381i −0.125061 0.992149i \(-0.539913\pi\)
−0.921757 + 0.387768i \(0.873246\pi\)
\(888\) 0 0
\(889\) 7.50000 + 12.9904i 0.251542 + 0.435683i
\(890\) 0 0
\(891\) 0 0
\(892\) 19.0000i 0.636167i
\(893\) 48.4974 28.0000i 1.62290 0.936984i
\(894\) 0 0
\(895\) 0 0
\(896\) 4.50000 7.79423i 0.150334 0.260387i
\(897\) 0 0
\(898\) −22.5167 + 13.0000i −0.751391 + 0.433816i
\(899\) 0 0
\(900\) 0 0
\(901\) −8.00000 −0.266519
\(902\) −8.66025 + 5.00000i −0.288355 + 0.166482i
\(903\) 0 0
\(904\) 12.0000 20.7846i 0.399114 0.691286i
\(905\) 0 0
\(906\) 0 0
\(907\) 44.1673 25.5000i 1.46655 0.846714i 0.467251 0.884125i \(-0.345244\pi\)
0.999300 + 0.0374111i \(0.0119111\pi\)
\(908\) 4.00000i 0.132745i
\(909\) 0 0
\(910\) 0 0
\(911\) −25.0000 43.3013i −0.828287 1.43464i −0.899381 0.437165i \(-0.855982\pi\)
0.0710941 0.997470i \(-0.477351\pi\)
\(912\) 0 0
\(913\) 15.5885 + 9.00000i 0.515903 + 0.297857i
\(914\) 10.0000 17.3205i 0.330771 0.572911i
\(915\) 0 0
\(916\) 7.50000 + 12.9904i 0.247807 + 0.429214i
\(917\) 18.0000i 0.594412i
\(918\) 0 0
\(919\) −10.0000 −0.329870 −0.164935 0.986304i \(-0.552741\pi\)
−0.164935 + 0.986304i \(0.552741\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 7.79423 + 4.50000i 0.256689 + 0.148200i
\(923\) −3.46410 2.00000i −0.114022 0.0658308i
\(924\) 0 0
\(925\) 0 0
\(926\) 36.0000 1.18303
\(927\) 0 0
\(928\) 5.00000i 0.164133i
\(929\) −7.00000 12.1244i −0.229663 0.397787i 0.728046 0.685529i \(-0.240429\pi\)
−0.957708 + 0.287742i \(0.907096\pi\)
\(930\) 0 0
\(931\) 8.00000 13.8564i 0.262189 0.454125i
\(932\) 20.7846 + 12.0000i 0.680823 + 0.393073i
\(933\) 0 0
\(934\) 10.0000 + 17.3205i 0.327210 + 0.566744i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) −7.79423 + 4.50000i −0.254491 + 0.146930i
\(939\) 0 0
\(940\) 0 0
\(941\) −3.50000 + 6.06218i −0.114097 + 0.197621i −0.917418 0.397924i \(-0.869731\pi\)
0.803322 + 0.595545i \(0.203064\pi\)
\(942\) 0 0
\(943\) 12.9904 7.50000i 0.423025 0.244234i
\(944\) 14.0000 0.455661
\(945\) 0 0
\(946\) 16.0000 0.520205
\(947\) 49.3634 28.5000i 1.60410 0.926126i 0.613441 0.789741i \(-0.289785\pi\)
0.990656 0.136385i \(-0.0435483\pi\)
\(948\) 0 0
\(949\) −4.00000 + 6.92820i −0.129845 + 0.224899i
\(950\) 0 0
\(951\) 0 0
\(952\) −31.1769 + 18.0000i −1.01045 + 0.583383i
\(953\) 26.0000i 0.842223i 0.907009 + 0.421111i \(0.138360\pi\)
−0.907009 + 0.421111i \(0.861640\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 4.00000 + 6.92820i 0.129369 + 0.224074i
\(957\) 0 0
\(958\) 15.5885 + 9.00000i 0.503640 + 0.290777i
\(959\) 18.0000 31.1769i 0.581250 1.00676i
\(960\) 0 0
\(961\) 15.5000 + 26.8468i 0.500000 + 0.866025i
\(962\) 8.00000i 0.257930i
\(963\) 0 0
\(964\) −11.0000 −0.354286
\(965\) 0 0
\(966\) 0 0
\(967\) 35.5070 + 20.5000i 1.14183 + 0.659236i 0.946883 0.321578i \(-0.104213\pi\)
0.194946 + 0.980814i \(0.437547\pi\)
\(968\) 18.1865 + 10.5000i 0.584537 + 0.337483i
\(969\) 0 0
\(970\) 0 0
\(971\) 36.0000 1.15529 0.577647 0.816286i \(-0.303971\pi\)
0.577647 + 0.816286i \(0.303971\pi\)
\(972\) 0 0
\(973\) 48.0000i 1.53881i
\(974\) 8.00000 + 13.8564i 0.256337 + 0.443988i
\(975\) 0 0
\(976\) 3.50000 6.06218i 0.112032 0.194046i
\(977\) 32.9090 + 19.0000i 1.05285 + 0.607864i 0.923446 0.383728i \(-0.125360\pi\)
0.129405 + 0.991592i \(0.458693\pi\)
\(978\) 0 0
\(979\) 15.0000 + 25.9808i 0.479402 + 0.830349i
\(980\) 0 0
\(981\) 0 0
\(982\) 20.0000i 0.638226i
\(983\) −2.59808 + 1.50000i −0.0828658 + 0.0478426i −0.540860 0.841112i \(-0.681901\pi\)
0.457995 + 0.888955i \(0.348568\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −2.00000 + 3.46410i −0.0636930 + 0.110319i
\(987\) 0 0
\(988\) −13.8564 + 8.00000i −0.440831 + 0.254514i
\(989\) −24.0000 −0.763156
\(990\) 0 0
\(991\) 26.0000 0.825917 0.412959 0.910750i \(-0.364495\pi\)
0.412959 + 0.910750i \(0.364495\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) −3.00000 + 5.19615i −0.0951542 + 0.164812i
\(995\) 0 0
\(996\) 0 0
\(997\) 15.5885 9.00000i 0.493691 0.285033i −0.232413 0.972617i \(-0.574662\pi\)
0.726105 + 0.687584i \(0.241329\pi\)
\(998\) 32.0000i 1.01294i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.k.a.199.2 4
3.2 odd 2 225.2.k.a.49.1 4
5.2 odd 4 135.2.e.a.91.1 2
5.3 odd 4 675.2.e.a.226.1 2
5.4 even 2 inner 675.2.k.a.199.1 4
9.2 odd 6 225.2.k.a.124.2 4
9.4 even 3 2025.2.b.d.649.2 2
9.5 odd 6 2025.2.b.c.649.1 2
9.7 even 3 inner 675.2.k.a.424.1 4
15.2 even 4 45.2.e.a.31.1 yes 2
15.8 even 4 225.2.e.a.76.1 2
15.14 odd 2 225.2.k.a.49.2 4
20.7 even 4 2160.2.q.a.1441.1 2
45.2 even 12 45.2.e.a.16.1 2
45.4 even 6 2025.2.b.d.649.1 2
45.7 odd 12 135.2.e.a.46.1 2
45.13 odd 12 2025.2.a.e.1.1 1
45.14 odd 6 2025.2.b.c.649.2 2
45.22 odd 12 405.2.a.b.1.1 1
45.23 even 12 2025.2.a.b.1.1 1
45.29 odd 6 225.2.k.a.124.1 4
45.32 even 12 405.2.a.e.1.1 1
45.34 even 6 inner 675.2.k.a.424.2 4
45.38 even 12 225.2.e.a.151.1 2
45.43 odd 12 675.2.e.a.451.1 2
60.47 odd 4 720.2.q.d.481.1 2
180.7 even 12 2160.2.q.a.721.1 2
180.47 odd 12 720.2.q.d.241.1 2
180.67 even 12 6480.2.a.x.1.1 1
180.167 odd 12 6480.2.a.k.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.2.e.a.16.1 2 45.2 even 12
45.2.e.a.31.1 yes 2 15.2 even 4
135.2.e.a.46.1 2 45.7 odd 12
135.2.e.a.91.1 2 5.2 odd 4
225.2.e.a.76.1 2 15.8 even 4
225.2.e.a.151.1 2 45.38 even 12
225.2.k.a.49.1 4 3.2 odd 2
225.2.k.a.49.2 4 15.14 odd 2
225.2.k.a.124.1 4 45.29 odd 6
225.2.k.a.124.2 4 9.2 odd 6
405.2.a.b.1.1 1 45.22 odd 12
405.2.a.e.1.1 1 45.32 even 12
675.2.e.a.226.1 2 5.3 odd 4
675.2.e.a.451.1 2 45.43 odd 12
675.2.k.a.199.1 4 5.4 even 2 inner
675.2.k.a.199.2 4 1.1 even 1 trivial
675.2.k.a.424.1 4 9.7 even 3 inner
675.2.k.a.424.2 4 45.34 even 6 inner
720.2.q.d.241.1 2 180.47 odd 12
720.2.q.d.481.1 2 60.47 odd 4
2025.2.a.b.1.1 1 45.23 even 12
2025.2.a.e.1.1 1 45.13 odd 12
2025.2.b.c.649.1 2 9.5 odd 6
2025.2.b.c.649.2 2 45.14 odd 6
2025.2.b.d.649.1 2 45.4 even 6
2025.2.b.d.649.2 2 9.4 even 3
2160.2.q.a.721.1 2 180.7 even 12
2160.2.q.a.1441.1 2 20.7 even 4
6480.2.a.k.1.1 1 180.167 odd 12
6480.2.a.x.1.1 1 180.67 even 12