L(s) = 1 | + (0.300 − 0.826i)2-s + (1.62 − 0.592i)3-s + (0.939 + 0.788i)4-s − 1.52i·6-s + (−2.41 − 2.87i)7-s + (2.45 − 1.41i)8-s + (2.29 − 1.92i)9-s + (−0.180 − 1.02i)11-s + (1.99 + 0.726i)12-s + (−1.08 − 2.99i)13-s + (−3.10 + 1.13i)14-s + (−0.00727 − 0.0412i)16-s + (−0.405 − 0.233i)17-s + (−0.902 − 2.47i)18-s + (2.34 + 4.06i)19-s + ⋯ |
L(s) = 1 | + (0.212 − 0.584i)2-s + (0.939 − 0.342i)3-s + (0.469 + 0.394i)4-s − 0.621i·6-s + (−0.913 − 1.08i)7-s + (0.868 − 0.501i)8-s + (0.766 − 0.642i)9-s + (−0.0545 − 0.309i)11-s + (0.576 + 0.209i)12-s + (−0.302 − 0.830i)13-s + (−0.830 + 0.302i)14-s + (−0.00181 − 0.0103i)16-s + (−0.0982 − 0.0567i)17-s + (−0.212 − 0.584i)18-s + (0.538 + 0.932i)19-s + ⋯ |
Λ(s)=(=(675s/2ΓC(s)L(s)(0.117+0.993i)Λ(2−s)
Λ(s)=(=(675s/2ΓC(s+1/2)L(s)(0.117+0.993i)Λ(1−s)
Degree: |
2 |
Conductor: |
675
= 33⋅52
|
Sign: |
0.117+0.993i
|
Analytic conductor: |
5.38990 |
Root analytic conductor: |
2.32161 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ675(274,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 675, ( :1/2), 0.117+0.993i)
|
Particular Values
L(1) |
≈ |
1.84900−1.64254i |
L(21) |
≈ |
1.84900−1.64254i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.62+0.592i)T |
| 5 | 1 |
good | 2 | 1+(−0.300+0.826i)T+(−1.53−1.28i)T2 |
| 7 | 1+(2.41+2.87i)T+(−1.21+6.89i)T2 |
| 11 | 1+(0.180+1.02i)T+(−10.3+3.76i)T2 |
| 13 | 1+(1.08+2.99i)T+(−9.95+8.35i)T2 |
| 17 | 1+(0.405+0.233i)T+(8.5+14.7i)T2 |
| 19 | 1+(−2.34−4.06i)T+(−9.5+16.4i)T2 |
| 23 | 1+(3.45−4.11i)T+(−3.99−22.6i)T2 |
| 29 | 1+(−5.45−1.98i)T+(22.2+18.6i)T2 |
| 31 | 1+(3.14+2.63i)T+(5.38+30.5i)T2 |
| 37 | 1+(−3.87−2.23i)T+(18.5+32.0i)T2 |
| 41 | 1+(7.52−2.73i)T+(31.4−26.3i)T2 |
| 43 | 1+(−11.9+2.11i)T+(40.4−14.7i)T2 |
| 47 | 1+(2.22+2.65i)T+(−8.16+46.2i)T2 |
| 53 | 1−8.83iT−53T2 |
| 59 | 1+(2.36−13.4i)T+(−55.4−20.1i)T2 |
| 61 | 1+(−7.46+6.26i)T+(10.5−60.0i)T2 |
| 67 | 1+(0.623+1.71i)T+(−51.3+43.0i)T2 |
| 71 | 1+(3.85−6.67i)T+(−35.5−61.4i)T2 |
| 73 | 1+(−0.705+0.407i)T+(36.5−63.2i)T2 |
| 79 | 1+(3.81+1.38i)T+(60.5+50.7i)T2 |
| 83 | 1+(5.81−15.9i)T+(−63.5−53.3i)T2 |
| 89 | 1+(5.19+9.00i)T+(−44.5+77.0i)T2 |
| 97 | 1+(6.02−1.06i)T+(91.1−33.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.11072758669553975315984201190, −9.816878904203814502196050393020, −8.417366991611189809231459640121, −7.57071715066642209724476291327, −7.09354123535797082659809558875, −5.96869599337755112343967603580, −4.17651916823089099576722728218, −3.45827122602436038115954886676, −2.70252703236316582122298059914, −1.21192609207470900952189099355,
2.08399801724437977880282913809, 2.85449468057580580454719898934, 4.33565536775290560216198864350, 5.28307184201176531075440757803, 6.40126106107705162790474540269, 7.03917308345942727636341597833, 8.086856139536791214641369968187, 9.037621464340035479490657395462, 9.660628387202151001919311942489, 10.46600348238192142302371930962