L(s) = 1 | + (0.300 + 0.826i)2-s + (1.62 + 0.592i)3-s + (0.939 − 0.788i)4-s + 1.52i·6-s + (−2.41 + 2.87i)7-s + (2.45 + 1.41i)8-s + (2.29 + 1.92i)9-s + (−0.180 + 1.02i)11-s + (1.99 − 0.726i)12-s + (−1.08 + 2.99i)13-s + (−3.10 − 1.13i)14-s + (−0.00727 + 0.0412i)16-s + (−0.405 + 0.233i)17-s + (−0.902 + 2.47i)18-s + (2.34 − 4.06i)19-s + ⋯ |
L(s) = 1 | + (0.212 + 0.584i)2-s + (0.939 + 0.342i)3-s + (0.469 − 0.394i)4-s + 0.621i·6-s + (−0.913 + 1.08i)7-s + (0.868 + 0.501i)8-s + (0.766 + 0.642i)9-s + (−0.0545 + 0.309i)11-s + (0.576 − 0.209i)12-s + (−0.302 + 0.830i)13-s + (−0.830 − 0.302i)14-s + (−0.00181 + 0.0103i)16-s + (−0.0982 + 0.0567i)17-s + (−0.212 + 0.584i)18-s + (0.538 − 0.932i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.117 - 0.993i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.117 - 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.84900 + 1.64254i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.84900 + 1.64254i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.62 - 0.592i)T \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (-0.300 - 0.826i)T + (-1.53 + 1.28i)T^{2} \) |
| 7 | \( 1 + (2.41 - 2.87i)T + (-1.21 - 6.89i)T^{2} \) |
| 11 | \( 1 + (0.180 - 1.02i)T + (-10.3 - 3.76i)T^{2} \) |
| 13 | \( 1 + (1.08 - 2.99i)T + (-9.95 - 8.35i)T^{2} \) |
| 17 | \( 1 + (0.405 - 0.233i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.34 + 4.06i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (3.45 + 4.11i)T + (-3.99 + 22.6i)T^{2} \) |
| 29 | \( 1 + (-5.45 + 1.98i)T + (22.2 - 18.6i)T^{2} \) |
| 31 | \( 1 + (3.14 - 2.63i)T + (5.38 - 30.5i)T^{2} \) |
| 37 | \( 1 + (-3.87 + 2.23i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (7.52 + 2.73i)T + (31.4 + 26.3i)T^{2} \) |
| 43 | \( 1 + (-11.9 - 2.11i)T + (40.4 + 14.7i)T^{2} \) |
| 47 | \( 1 + (2.22 - 2.65i)T + (-8.16 - 46.2i)T^{2} \) |
| 53 | \( 1 + 8.83iT - 53T^{2} \) |
| 59 | \( 1 + (2.36 + 13.4i)T + (-55.4 + 20.1i)T^{2} \) |
| 61 | \( 1 + (-7.46 - 6.26i)T + (10.5 + 60.0i)T^{2} \) |
| 67 | \( 1 + (0.623 - 1.71i)T + (-51.3 - 43.0i)T^{2} \) |
| 71 | \( 1 + (3.85 + 6.67i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-0.705 - 0.407i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (3.81 - 1.38i)T + (60.5 - 50.7i)T^{2} \) |
| 83 | \( 1 + (5.81 + 15.9i)T + (-63.5 + 53.3i)T^{2} \) |
| 89 | \( 1 + (5.19 - 9.00i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (6.02 + 1.06i)T + (91.1 + 33.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.46600348238192142302371930962, −9.660628387202151001919311942489, −9.037621464340035479490657395462, −8.086856139536791214641369968187, −7.03917308345942727636341597833, −6.40126106107705162790474540269, −5.28307184201176531075440757803, −4.33565536775290560216198864350, −2.85449468057580580454719898934, −2.08399801724437977880282913809,
1.21192609207470900952189099355, 2.70252703236316582122298059914, 3.45827122602436038115954886676, 4.17651916823089099576722728218, 5.96869599337755112343967603580, 7.09354123535797082659809558875, 7.57071715066642209724476291327, 8.417366991611189809231459640121, 9.816878904203814502196050393020, 10.11072758669553975315984201190